解决废金属分类任务的机器学习方法

N. Smirnov, Egor I. Rybin
{"title":"解决废金属分类任务的机器学习方法","authors":"N. Smirnov, Egor I. Rybin","doi":"10.1109/RusAutoCon49822.2020.9208157","DOIUrl":null,"url":null,"abstract":"This paper deals with the task of scrap metal images classification. The authors proposed the method for automation of the cropping scrap metal images from convex quadrangle process and applied this method on railway carriages photographs. The brief description of convolutional neural networks (CNN) and machine learning methods used during the research is given in the paper. The paper presents the results of using various CNN and machine learning methods in the task of classifying images of scrap metal. The algorithm of improving image classification results is proposed. The results of the calculation showed high classification accuracy and allowed to choose the best classifier.","PeriodicalId":101834,"journal":{"name":"2020 International Russian Automation Conference (RusAutoCon)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Machine Learning Methods for Solving Scrap Metal Classification Task\",\"authors\":\"N. Smirnov, Egor I. Rybin\",\"doi\":\"10.1109/RusAutoCon49822.2020.9208157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the task of scrap metal images classification. The authors proposed the method for automation of the cropping scrap metal images from convex quadrangle process and applied this method on railway carriages photographs. The brief description of convolutional neural networks (CNN) and machine learning methods used during the research is given in the paper. The paper presents the results of using various CNN and machine learning methods in the task of classifying images of scrap metal. The algorithm of improving image classification results is proposed. The results of the calculation showed high classification accuracy and allowed to choose the best classifier.\",\"PeriodicalId\":101834,\"journal\":{\"name\":\"2020 International Russian Automation Conference (RusAutoCon)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Russian Automation Conference (RusAutoCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RusAutoCon49822.2020.9208157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Russian Automation Conference (RusAutoCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RusAutoCon49822.2020.9208157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文主要研究废旧金属图像的分类问题。提出了凸四边形图像自动裁剪方法,并将该方法应用于铁路车厢图像。本文简要介绍了研究中使用的卷积神经网络(CNN)和机器学习方法。本文介绍了各种CNN和机器学习方法在废金属图像分类任务中的应用结果。提出了一种改进图像分类结果的算法。计算结果表明,分类精度较高,可以选择最佳分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Methods for Solving Scrap Metal Classification Task
This paper deals with the task of scrap metal images classification. The authors proposed the method for automation of the cropping scrap metal images from convex quadrangle process and applied this method on railway carriages photographs. The brief description of convolutional neural networks (CNN) and machine learning methods used during the research is given in the paper. The paper presents the results of using various CNN and machine learning methods in the task of classifying images of scrap metal. The algorithm of improving image classification results is proposed. The results of the calculation showed high classification accuracy and allowed to choose the best classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信