{"title":"射频领域金刚石器件的最新进展","authors":"M. Kasu, T. Oishi","doi":"10.1109/CSICS.2016.7751060","DOIUrl":null,"url":null,"abstract":"Diamond possesses exceptional physical properties, such as a high breakdown field and carrier mobility. It is therefore expected to be highly efficient for high-power RF devices. We identify hole carrier doping in diamond using nitrogen dioxide (NO2). Furthermore, we find that an aluminum oxide (Al2O3) passivation layer greatly improves the thermal stability of the hole channel. These two technologies enable us to create thermally stable high-performance diamond field-effect transistors (FETs). The diamond FET shows a maximum IDS value of -1.35 A/mm, cut-off frequencies fT and fMAX of 35 GHz and 70 GHz, respectively, and an RF output power density of 2 W/mm at 1 GHz.","PeriodicalId":183218,"journal":{"name":"2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Recent Progress of Diamond Devices for RF Applications\",\"authors\":\"M. Kasu, T. Oishi\",\"doi\":\"10.1109/CSICS.2016.7751060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diamond possesses exceptional physical properties, such as a high breakdown field and carrier mobility. It is therefore expected to be highly efficient for high-power RF devices. We identify hole carrier doping in diamond using nitrogen dioxide (NO2). Furthermore, we find that an aluminum oxide (Al2O3) passivation layer greatly improves the thermal stability of the hole channel. These two technologies enable us to create thermally stable high-performance diamond field-effect transistors (FETs). The diamond FET shows a maximum IDS value of -1.35 A/mm, cut-off frequencies fT and fMAX of 35 GHz and 70 GHz, respectively, and an RF output power density of 2 W/mm at 1 GHz.\",\"PeriodicalId\":183218,\"journal\":{\"name\":\"2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICS.2016.7751060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2016.7751060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
摘要
金刚石具有优异的物理特性,如高击穿场和载流子迁移率。因此,它有望成为高功率射频器件的高效材料。我们用二氧化氮(NO2)鉴定了金刚石中的空穴载流子掺杂。此外,我们发现氧化铝(Al2O3)钝化层大大提高了孔通道的热稳定性。这两种技术使我们能够制造出热稳定的高性能金刚石场效应晶体管(fet)。金刚石FET的最大IDS值为-1.35 a /mm,截止频率fT和fMAX分别为35 GHz和70 GHz, 1ghz时的RF输出功率密度为2 W/mm。
Recent Progress of Diamond Devices for RF Applications
Diamond possesses exceptional physical properties, such as a high breakdown field and carrier mobility. It is therefore expected to be highly efficient for high-power RF devices. We identify hole carrier doping in diamond using nitrogen dioxide (NO2). Furthermore, we find that an aluminum oxide (Al2O3) passivation layer greatly improves the thermal stability of the hole channel. These two technologies enable us to create thermally stable high-performance diamond field-effect transistors (FETs). The diamond FET shows a maximum IDS value of -1.35 A/mm, cut-off frequencies fT and fMAX of 35 GHz and 70 GHz, respectively, and an RF output power density of 2 W/mm at 1 GHz.