Astha Rai, Niranjan Bhujel, T. Hansen, R. Tonkoski, Ujjwol Tamrakar
{"title":"频率支持模型预测控制在实时数字模拟器中的实现","authors":"Astha Rai, Niranjan Bhujel, T. Hansen, R. Tonkoski, Ujjwol Tamrakar","doi":"10.1109/EESAT55007.2022.9998027","DOIUrl":null,"url":null,"abstract":"Microgrids experience larger frequency deviations compared to bulk power systems for the same disturbance. Energy storage systems (ESSs) can potentially provide fast frequency support in such microgrids to limit frequency deviation within acceptable limits. One of the effective control approaches to achieve fast-frequency support in ESSs is a model predictive control (MPC)-based approach. Traditionally, MPC is known to use higher computational costs compared to other conventional controllers. In this paper, an MPC-based fast-frequency support mechanism is developed for an ESS and implemented on a real-time digital simulator to provide fast-frequency support in a microgrid model based in Cordova, Alaska. Results show that the computation time of MPC for frequency support is shorter than the simulation time step, justifying real-time applicability. The techniques presented in this paper can be generalized to develop novel MPC-based control approaches for ESSs and analyze their performance through real-time digital simulation techniques before deployment.","PeriodicalId":310250,"journal":{"name":"2022 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implementation of Model Predictive Control for Frequency Support in a Real-time Digital Simulator\",\"authors\":\"Astha Rai, Niranjan Bhujel, T. Hansen, R. Tonkoski, Ujjwol Tamrakar\",\"doi\":\"10.1109/EESAT55007.2022.9998027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microgrids experience larger frequency deviations compared to bulk power systems for the same disturbance. Energy storage systems (ESSs) can potentially provide fast frequency support in such microgrids to limit frequency deviation within acceptable limits. One of the effective control approaches to achieve fast-frequency support in ESSs is a model predictive control (MPC)-based approach. Traditionally, MPC is known to use higher computational costs compared to other conventional controllers. In this paper, an MPC-based fast-frequency support mechanism is developed for an ESS and implemented on a real-time digital simulator to provide fast-frequency support in a microgrid model based in Cordova, Alaska. Results show that the computation time of MPC for frequency support is shorter than the simulation time step, justifying real-time applicability. The techniques presented in this paper can be generalized to develop novel MPC-based control approaches for ESSs and analyze their performance through real-time digital simulation techniques before deployment.\",\"PeriodicalId\":310250,\"journal\":{\"name\":\"2022 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EESAT55007.2022.9998027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EESAT55007.2022.9998027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation of Model Predictive Control for Frequency Support in a Real-time Digital Simulator
Microgrids experience larger frequency deviations compared to bulk power systems for the same disturbance. Energy storage systems (ESSs) can potentially provide fast frequency support in such microgrids to limit frequency deviation within acceptable limits. One of the effective control approaches to achieve fast-frequency support in ESSs is a model predictive control (MPC)-based approach. Traditionally, MPC is known to use higher computational costs compared to other conventional controllers. In this paper, an MPC-based fast-frequency support mechanism is developed for an ESS and implemented on a real-time digital simulator to provide fast-frequency support in a microgrid model based in Cordova, Alaska. Results show that the computation time of MPC for frequency support is shorter than the simulation time step, justifying real-time applicability. The techniques presented in this paper can be generalized to develop novel MPC-based control approaches for ESSs and analyze their performance through real-time digital simulation techniques before deployment.