遗传算法在危险控制系统可靠性优化设计中的应用

D. Popescu, M. Pater
{"title":"遗传算法在危险控制系统可靠性优化设计中的应用","authors":"D. Popescu, M. Pater","doi":"10.1109/SOFA.2007.4318317","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a genetic algorithms procedure for solving optimal danger control system design where choices on the type of components to be used and their assembly configuration are driven by reliability objective with the economic costs associated to the design implementation, system construction and future operation. The genetic algorithm considers a population of chromosomes, each one encoding a different alternative design solution. For a given design solution, the system performance over a specified mission time is evaluated in terms of a pre-defined reliability function. This latter constitutes the objective function to be maximized by the genetic algorithm through the evolution of the successive generations of the population in conditions of not overlapping a cost constraint for the system.","PeriodicalId":205589,"journal":{"name":"2007 2nd International Workshop on Soft Computing Applications","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Use of Genetic Algorithms for Optimizing the Reliability of a Danger Control System Design\",\"authors\":\"D. Popescu, M. Pater\",\"doi\":\"10.1109/SOFA.2007.4318317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a genetic algorithms procedure for solving optimal danger control system design where choices on the type of components to be used and their assembly configuration are driven by reliability objective with the economic costs associated to the design implementation, system construction and future operation. The genetic algorithm considers a population of chromosomes, each one encoding a different alternative design solution. For a given design solution, the system performance over a specified mission time is evaluated in terms of a pre-defined reliability function. This latter constitutes the objective function to be maximized by the genetic algorithm through the evolution of the successive generations of the population in conditions of not overlapping a cost constraint for the system.\",\"PeriodicalId\":205589,\"journal\":{\"name\":\"2007 2nd International Workshop on Soft Computing Applications\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd International Workshop on Soft Computing Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOFA.2007.4318317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd International Workshop on Soft Computing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOFA.2007.4318317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种遗传算法程序来解决最优的危险控制系统设计,其中所使用的部件类型及其装配配置的选择是由可靠性目标驱动的,并且与设计实施,系统构建和未来运行相关的经济成本。遗传算法考虑一群染色体,每一个都编码一个不同的设计方案。对于给定的设计方案,在指定的任务时间内,系统性能根据预定义的可靠性函数进行评估。后者构成了遗传算法在系统成本约束不重叠的条件下,通过种群连续几代的进化来实现最大化的目标函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Use of Genetic Algorithms for Optimizing the Reliability of a Danger Control System Design
In this paper, we propose a genetic algorithms procedure for solving optimal danger control system design where choices on the type of components to be used and their assembly configuration are driven by reliability objective with the economic costs associated to the design implementation, system construction and future operation. The genetic algorithm considers a population of chromosomes, each one encoding a different alternative design solution. For a given design solution, the system performance over a specified mission time is evaluated in terms of a pre-defined reliability function. This latter constitutes the objective function to be maximized by the genetic algorithm through the evolution of the successive generations of the population in conditions of not overlapping a cost constraint for the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信