一种新的机器学习算法:固定分割平均

Hyung-Il Lee, Chung-Hwa Yoon
{"title":"一种新的机器学习算法:固定分割平均","authors":"Hyung-Il Lee, Chung-Hwa Yoon","doi":"10.1109/TENCON.1999.818450","DOIUrl":null,"url":null,"abstract":"We propose the Fixed Partition Averaging (FPA) method for reducing the storage requirement and classification time of memory based reasoning (MBR). This method extracts representative patterns from the training set using an instance averaging technique. First, the proposed algorithm partitions the pattern space into a fixed number of hyperrectangles, and then it averages patterns in each hyperrectangle to extract a representative. This algorithm then uses the mutual information between the features and class information as its weights to improve the classification accuracy. We present the FPA algorithm and verify its performance. We compare its classification accuracy, storage requirement and actual classification time with k-NN and the EACH system on 7 carefully chosen data sets from the UCI Machine Learning Database repository.","PeriodicalId":121142,"journal":{"name":"Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new machine learning algorithm: fixed partition averaging\",\"authors\":\"Hyung-Il Lee, Chung-Hwa Yoon\",\"doi\":\"10.1109/TENCON.1999.818450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose the Fixed Partition Averaging (FPA) method for reducing the storage requirement and classification time of memory based reasoning (MBR). This method extracts representative patterns from the training set using an instance averaging technique. First, the proposed algorithm partitions the pattern space into a fixed number of hyperrectangles, and then it averages patterns in each hyperrectangle to extract a representative. This algorithm then uses the mutual information between the features and class information as its weights to improve the classification accuracy. We present the FPA algorithm and verify its performance. We compare its classification accuracy, storage requirement and actual classification time with k-NN and the EACH system on 7 carefully chosen data sets from the UCI Machine Learning Database repository.\",\"PeriodicalId\":121142,\"journal\":{\"name\":\"Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.1999.818450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.1999.818450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了减少基于记忆的推理(MBR)的存储需求和分类时间,提出了固定分区平均(FPA)方法。该方法利用实例平均技术从训练集中提取有代表性的模式。该算法首先将模式空间划分为固定数量的超矩形,然后对每个超矩形中的模式进行平均,提取具有代表性的模式。该算法利用特征与类信息之间的互信息作为权重,提高分类精度。提出了FPA算法并对其性能进行了验证。我们在UCI机器学习数据库库中精心挑选的7个数据集上,将其分类精度、存储需求和实际分类时间与k-NN和EACH系统进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new machine learning algorithm: fixed partition averaging
We propose the Fixed Partition Averaging (FPA) method for reducing the storage requirement and classification time of memory based reasoning (MBR). This method extracts representative patterns from the training set using an instance averaging technique. First, the proposed algorithm partitions the pattern space into a fixed number of hyperrectangles, and then it averages patterns in each hyperrectangle to extract a representative. This algorithm then uses the mutual information between the features and class information as its weights to improve the classification accuracy. We present the FPA algorithm and verify its performance. We compare its classification accuracy, storage requirement and actual classification time with k-NN and the EACH system on 7 carefully chosen data sets from the UCI Machine Learning Database repository.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信