高风险决策的可解释运筹学:设计希腊COVID-19测试系统

Hamsa Bastani, K. Drakopoulos, Vishal Gupta, J. Vlachogiannis, Christos Hadjichristodoulou, P. Lagiou, G. Magiorkinis, Dimitris Paraskevis, S. Tsiodras
{"title":"高风险决策的可解释运筹学:设计希腊COVID-19测试系统","authors":"Hamsa Bastani, K. Drakopoulos, Vishal Gupta, J. Vlachogiannis, Christos Hadjichristodoulou, P. Lagiou, G. Magiorkinis, Dimitris Paraskevis, S. Tsiodras","doi":"10.1287/inte.2022.1128","DOIUrl":null,"url":null,"abstract":"In the summer of 2020, in collaboration with the Greek government, we designed and deployed Eva—the first national-scale, reinforcement learning system for targeted COVID-19 testing. In this paper, we detail the rationale for three major design/algorithmic elements: Eva’s testing supply chain, estimating COVID-19 prevalence, and test allocation.","PeriodicalId":430990,"journal":{"name":"INFORMS J. Appl. Anal.","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Interpretable Operations Research for High-Stakes Decisions: Designing the Greek COVID-19 Testing System\",\"authors\":\"Hamsa Bastani, K. Drakopoulos, Vishal Gupta, J. Vlachogiannis, Christos Hadjichristodoulou, P. Lagiou, G. Magiorkinis, Dimitris Paraskevis, S. Tsiodras\",\"doi\":\"10.1287/inte.2022.1128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the summer of 2020, in collaboration with the Greek government, we designed and deployed Eva—the first national-scale, reinforcement learning system for targeted COVID-19 testing. In this paper, we detail the rationale for three major design/algorithmic elements: Eva’s testing supply chain, estimating COVID-19 prevalence, and test allocation.\",\"PeriodicalId\":430990,\"journal\":{\"name\":\"INFORMS J. Appl. Anal.\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INFORMS J. Appl. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/inte.2022.1128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS J. Appl. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/inte.2022.1128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

2020年夏天,我们与希腊政府合作,设计并部署了eva,这是第一个全国性的针对COVID-19检测的强化学习系统。在本文中,我们详细介绍了三个主要设计/算法元素的基本原理:Eva的测试供应链、估计COVID-19流行率和测试分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpretable Operations Research for High-Stakes Decisions: Designing the Greek COVID-19 Testing System
In the summer of 2020, in collaboration with the Greek government, we designed and deployed Eva—the first national-scale, reinforcement learning system for targeted COVID-19 testing. In this paper, we detail the rationale for three major design/algorithmic elements: Eva’s testing supply chain, estimating COVID-19 prevalence, and test allocation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信