使用高粒度度量的智能合约自适应安全性

Venkata Siva Vijayendra Bhamidipati, Michael Chan, Derek Chamorro, Arpit Jain, Ashok Srinivasa Murthy
{"title":"使用高粒度度量的智能合约自适应安全性","authors":"Venkata Siva Vijayendra Bhamidipati, Michael Chan, Derek Chamorro, Arpit Jain, Ashok Srinivasa Murthy","doi":"10.1145/3387168.3387214","DOIUrl":null,"url":null,"abstract":"In this work, we present a systems centric approach towards implementing security in Blockchain ecosystems. First, we detail the motivation for our security approach. Then, we detail the foundation of this approach by describing the concept of inline, Non-invasive High Granularity Metrics (HGMs). Following this, we outline how such metrics can be used effectively to monitor Blockchain ecosystems to detect behavior that is not deemed secure. We describe how they can be used to build whitelist and blacklist access controls in an adaptive manner, and then describe how they can be effectively used to detect potentially malicious behavior that is not yet baked into the access control structures. Finally, we discuss scalability and potential improvements for future work.","PeriodicalId":346739,"journal":{"name":"Proceedings of the 3rd International Conference on Vision, Image and Signal Processing","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive Security for Smart Contracts using High Granularity Metrics\",\"authors\":\"Venkata Siva Vijayendra Bhamidipati, Michael Chan, Derek Chamorro, Arpit Jain, Ashok Srinivasa Murthy\",\"doi\":\"10.1145/3387168.3387214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a systems centric approach towards implementing security in Blockchain ecosystems. First, we detail the motivation for our security approach. Then, we detail the foundation of this approach by describing the concept of inline, Non-invasive High Granularity Metrics (HGMs). Following this, we outline how such metrics can be used effectively to monitor Blockchain ecosystems to detect behavior that is not deemed secure. We describe how they can be used to build whitelist and blacklist access controls in an adaptive manner, and then describe how they can be effectively used to detect potentially malicious behavior that is not yet baked into the access control structures. Finally, we discuss scalability and potential improvements for future work.\",\"PeriodicalId\":346739,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Vision, Image and Signal Processing\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Vision, Image and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3387168.3387214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Vision, Image and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3387168.3387214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,我们提出了一种在区块链生态系统中实现安全性的以系统为中心的方法。首先,我们详细说明我们的安全方法的动机。然后,我们通过描述内联、非侵入性高粒度度量(hgm)的概念详细介绍了这种方法的基础。接下来,我们概述了如何有效地使用这些指标来监视区块链生态系统,以检测不被认为是安全的行为。我们描述了如何使用它们以自适应方式构建白名单和黑名单访问控制,然后描述了如何有效地使用它们来检测尚未纳入访问控制结构的潜在恶意行为。最后,我们讨论了可伸缩性和未来工作的潜在改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Security for Smart Contracts using High Granularity Metrics
In this work, we present a systems centric approach towards implementing security in Blockchain ecosystems. First, we detail the motivation for our security approach. Then, we detail the foundation of this approach by describing the concept of inline, Non-invasive High Granularity Metrics (HGMs). Following this, we outline how such metrics can be used effectively to monitor Blockchain ecosystems to detect behavior that is not deemed secure. We describe how they can be used to build whitelist and blacklist access controls in an adaptive manner, and then describe how they can be effectively used to detect potentially malicious behavior that is not yet baked into the access control structures. Finally, we discuss scalability and potential improvements for future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信