用成像光谱反射法同时测定薄膜的光学常数、局部厚度和局部粗糙度

D. Nečas, I. Ohlídal, J. Vodák, M. Ohlídal, D. Franta
{"title":"用成像光谱反射法同时测定薄膜的光学常数、局部厚度和局部粗糙度","authors":"D. Nečas, I. Ohlídal, J. Vodák, M. Ohlídal, D. Franta","doi":"10.1117/12.2190091","DOIUrl":null,"url":null,"abstract":"A new optical characterization method based on imaging spectroscopic reflectometry (ISR) is presented and illustrated on the characterization of rough non-uniform epitaxial ZnSe films prepared on GaAs substrates. The method allows the determination of all parameters describing the thin films exhibiting boundary roughness and non-uniformity in thickness, i.e. determination of the spectral dependencies of the optical constants, map of local thickness and map of local rms values of heights of the irregularities for the rough boundaries. The local normal reflectance spectra in ISR correspond to small areas (37×37 μm2) on the thin films measured within the spectral range 270{900 nm by pixels of a CCD camera serving as the detector of imaging spectrophotometer constructed in our laboratory. To our experience the small areas corresponding to the pixels are sufficiently small so that the majority of the films can be considered uniform in all parameters within these areas. Boundary roughness is included into the reflectance formulas by means of the scalar diffraction theory (SDT) and the optical constant spectra of the ZnSe films were expressed by the dispersion model based on the parametrization of the joint density of electronic states (PJDOS). In general, there is a correlation between the searched parameters if the individual local reflectance spectra are fitted separately and, therefore, the local reflectance spectra measured for all the pixels are treated simultaneously using so called multi-pixel method in order to remove or reduce this correlation and determine the values of all the parameters with a sufficient accuracy. The results of the optical characterization of the same selected sample of the epitaxial ZnSe thin film obtained using the method presented here and combined method of variable-angle spectroscopic ellipsometry, spectroscopic reflectometry and single-pixel immersion spectroscopic reflectometry are introduced in the contribution as well.","PeriodicalId":212434,"journal":{"name":"SPIE Optical Systems Design","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous determination of optical constants, local thickness, and local roughness of thin films by imaging spectroscopic reflectometry\",\"authors\":\"D. Nečas, I. Ohlídal, J. Vodák, M. Ohlídal, D. Franta\",\"doi\":\"10.1117/12.2190091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new optical characterization method based on imaging spectroscopic reflectometry (ISR) is presented and illustrated on the characterization of rough non-uniform epitaxial ZnSe films prepared on GaAs substrates. The method allows the determination of all parameters describing the thin films exhibiting boundary roughness and non-uniformity in thickness, i.e. determination of the spectral dependencies of the optical constants, map of local thickness and map of local rms values of heights of the irregularities for the rough boundaries. The local normal reflectance spectra in ISR correspond to small areas (37×37 μm2) on the thin films measured within the spectral range 270{900 nm by pixels of a CCD camera serving as the detector of imaging spectrophotometer constructed in our laboratory. To our experience the small areas corresponding to the pixels are sufficiently small so that the majority of the films can be considered uniform in all parameters within these areas. Boundary roughness is included into the reflectance formulas by means of the scalar diffraction theory (SDT) and the optical constant spectra of the ZnSe films were expressed by the dispersion model based on the parametrization of the joint density of electronic states (PJDOS). In general, there is a correlation between the searched parameters if the individual local reflectance spectra are fitted separately and, therefore, the local reflectance spectra measured for all the pixels are treated simultaneously using so called multi-pixel method in order to remove or reduce this correlation and determine the values of all the parameters with a sufficient accuracy. The results of the optical characterization of the same selected sample of the epitaxial ZnSe thin film obtained using the method presented here and combined method of variable-angle spectroscopic ellipsometry, spectroscopic reflectometry and single-pixel immersion spectroscopic reflectometry are introduced in the contribution as well.\",\"PeriodicalId\":212434,\"journal\":{\"name\":\"SPIE Optical Systems Design\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Optical Systems Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2190091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optical Systems Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2190091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于成像光谱反射法(ISR)的新型光学表征方法,并对GaAs衬底上制备的粗糙非均匀外延ZnSe薄膜进行了表征。该方法可以确定描述具有边界粗糙度和厚度不均匀性的薄膜的所有参数,即确定光学常数的光谱依赖性,局部厚度图和粗糙边界不规则性高度的局部均方根值图。ISR的局部法向反射光谱对应于在270{900 nm光谱范围内测量的薄膜上的小区域(37×37 μm2)。根据我们的经验,与像素相对应的小区域足够小,因此大多数薄膜在这些区域内的所有参数可以被认为是均匀的。利用标量衍射理论(SDT)将边界粗糙度计入反射率公式,利用基于电子态联合密度参数化的色散模型表示ZnSe薄膜的光学常数光谱。通常,如果单独拟合单个局部反射光谱,则搜索参数之间存在相关性,因此,使用所谓的多像素方法同时处理所有像素测量的局部反射光谱,以消除或降低这种相关性,并以足够的精度确定所有参数的值。本文还介绍了用该方法和变角光谱椭偏法、光谱反射法和单像素浸没光谱反射法相结合的方法对同一外延ZnSe薄膜样品的光学表征结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous determination of optical constants, local thickness, and local roughness of thin films by imaging spectroscopic reflectometry
A new optical characterization method based on imaging spectroscopic reflectometry (ISR) is presented and illustrated on the characterization of rough non-uniform epitaxial ZnSe films prepared on GaAs substrates. The method allows the determination of all parameters describing the thin films exhibiting boundary roughness and non-uniformity in thickness, i.e. determination of the spectral dependencies of the optical constants, map of local thickness and map of local rms values of heights of the irregularities for the rough boundaries. The local normal reflectance spectra in ISR correspond to small areas (37×37 μm2) on the thin films measured within the spectral range 270{900 nm by pixels of a CCD camera serving as the detector of imaging spectrophotometer constructed in our laboratory. To our experience the small areas corresponding to the pixels are sufficiently small so that the majority of the films can be considered uniform in all parameters within these areas. Boundary roughness is included into the reflectance formulas by means of the scalar diffraction theory (SDT) and the optical constant spectra of the ZnSe films were expressed by the dispersion model based on the parametrization of the joint density of electronic states (PJDOS). In general, there is a correlation between the searched parameters if the individual local reflectance spectra are fitted separately and, therefore, the local reflectance spectra measured for all the pixels are treated simultaneously using so called multi-pixel method in order to remove or reduce this correlation and determine the values of all the parameters with a sufficient accuracy. The results of the optical characterization of the same selected sample of the epitaxial ZnSe thin film obtained using the method presented here and combined method of variable-angle spectroscopic ellipsometry, spectroscopic reflectometry and single-pixel immersion spectroscopic reflectometry are introduced in the contribution as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信