道路裂缝自动实时识别系统

Lucia-Georgiana Coca, Ciprian-Gabriel Cusmuliuc, Vladut-Haralambie Morosanu, Teodora Grosu, Adrian Iftene
{"title":"道路裂缝自动实时识别系统","authors":"Lucia-Georgiana Coca, Ciprian-Gabriel Cusmuliuc, Vladut-Haralambie Morosanu, Teodora Grosu, Adrian Iftene","doi":"10.1109/SYNASC51798.2020.00043","DOIUrl":null,"url":null,"abstract":"Crack identification is a common problem that requires human involvement and manual identification. Our work is focused on detecting street surface cracks using Computer Vision algorithms. The problem at hand has been divided in three steps: (i) the first step transforms a given 3D video in 2D individual frames, (ii) the second step processes these frames in order to identify the relevant part of the street using Support Vector Machine and Vanishing Point Detection and (iii) in the third step the detection itself has been implemented using three methods: Convolutional Neural Network, U-Net and a Local Binary Pattern. In this paper we present our methods, experiments and results for detecting cracks on surfaces like streets and sidewalks.","PeriodicalId":278104,"journal":{"name":"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Real-Time Road Crack Identification System\",\"authors\":\"Lucia-Georgiana Coca, Ciprian-Gabriel Cusmuliuc, Vladut-Haralambie Morosanu, Teodora Grosu, Adrian Iftene\",\"doi\":\"10.1109/SYNASC51798.2020.00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crack identification is a common problem that requires human involvement and manual identification. Our work is focused on detecting street surface cracks using Computer Vision algorithms. The problem at hand has been divided in three steps: (i) the first step transforms a given 3D video in 2D individual frames, (ii) the second step processes these frames in order to identify the relevant part of the street using Support Vector Machine and Vanishing Point Detection and (iii) in the third step the detection itself has been implemented using three methods: Convolutional Neural Network, U-Net and a Local Binary Pattern. In this paper we present our methods, experiments and results for detecting cracks on surfaces like streets and sidewalks.\",\"PeriodicalId\":278104,\"journal\":{\"name\":\"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC51798.2020.00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC51798.2020.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

裂纹识别是一个常见的问题,需要人工参与和人工识别。我们的工作重点是使用计算机视觉算法检测街道表面裂缝。手头的问题分为三个步骤:(i)第一步将给定的3D视频转换为2D单独帧,(ii)第二步处理这些帧,以便使用支持向量机和消失点检测来识别街道的相关部分,(iii)在第三步中,检测本身已经使用三种方法实现:卷积神经网络,U-Net和局部二进制模式。在本文中,我们提出了我们的方法,实验和结果检测裂缝表面,如街道和人行道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Real-Time Road Crack Identification System
Crack identification is a common problem that requires human involvement and manual identification. Our work is focused on detecting street surface cracks using Computer Vision algorithms. The problem at hand has been divided in three steps: (i) the first step transforms a given 3D video in 2D individual frames, (ii) the second step processes these frames in order to identify the relevant part of the street using Support Vector Machine and Vanishing Point Detection and (iii) in the third step the detection itself has been implemented using three methods: Convolutional Neural Network, U-Net and a Local Binary Pattern. In this paper we present our methods, experiments and results for detecting cracks on surfaces like streets and sidewalks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信