果蝇腹侧神经索的运动神经元识别

Xiao Chang, Michael D. Kim, A. Chiba, G. Tsechpenakis
{"title":"果蝇腹侧神经索的运动神经元识别","authors":"Xiao Chang, Michael D. Kim, A. Chiba, G. Tsechpenakis","doi":"10.1109/ISBI.2013.6556816","DOIUrl":null,"url":null,"abstract":"We exploit the morphological stereotypy and relative simplicity of the Drosophila nervous system to model the diverse neuronal morphologies of individual motor neurons and understand underlying principles of synaptic connectivity in a motor circuit. In our analysis, we use images depicting single neurons labeled with green fluorescent protein (GFP) and serially imaged with laser scanning confocal microscopy. We model morphology with a novel formulation of Conditional Random Fields, a hierarchical latent-state CRF, to capture the highly varying compartment-based structure of the neurons (soma-axon-dendrites). In the training phase, we follow two approaches: (i) hierarchical learning, were compartment labels are given, and (ii) latent-state learning, where compartment labels are not given in the training samples. We demonstrate the accuracy of our approach using wild-type MNs in the larval ventral nerve cord. However, our method can also be used for the identification of MN mutations, as well as the automated annotation of the motor circuitry in wild type and mutant animals.","PeriodicalId":178011,"journal":{"name":"2013 IEEE 10th International Symposium on Biomedical Imaging","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Motor neuron recognition in the Drosophila ventral nerve cord\",\"authors\":\"Xiao Chang, Michael D. Kim, A. Chiba, G. Tsechpenakis\",\"doi\":\"10.1109/ISBI.2013.6556816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We exploit the morphological stereotypy and relative simplicity of the Drosophila nervous system to model the diverse neuronal morphologies of individual motor neurons and understand underlying principles of synaptic connectivity in a motor circuit. In our analysis, we use images depicting single neurons labeled with green fluorescent protein (GFP) and serially imaged with laser scanning confocal microscopy. We model morphology with a novel formulation of Conditional Random Fields, a hierarchical latent-state CRF, to capture the highly varying compartment-based structure of the neurons (soma-axon-dendrites). In the training phase, we follow two approaches: (i) hierarchical learning, were compartment labels are given, and (ii) latent-state learning, where compartment labels are not given in the training samples. We demonstrate the accuracy of our approach using wild-type MNs in the larval ventral nerve cord. However, our method can also be used for the identification of MN mutations, as well as the automated annotation of the motor circuitry in wild type and mutant animals.\",\"PeriodicalId\":178011,\"journal\":{\"name\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2013.6556816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2013.6556816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们利用果蝇神经系统的形态定型和相对简单性来模拟单个运动神经元的不同神经元形态,并了解运动回路中突触连接的基本原理。在我们的分析中,我们使用绿色荧光蛋白(GFP)标记的单个神经元图像,并使用激光扫描共聚焦显微镜进行串行成像。我们用一种新的条件随机场(Conditional Random Fields)公式(一种分层潜态CRF)来模拟形态学,以捕捉神经元(体细胞-轴突-树突)高度变化的室基结构。在训练阶段,我们遵循两种方法:(i)分层学习,给出隔室标签;(ii)潜在状态学习,在训练样本中不给出隔室标签。我们证明了我们的方法的准确性使用野生型MNs在幼虫腹侧神经索。然而,我们的方法也可以用于识别MN突变,以及野生型和突变动物的运动电路的自动注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motor neuron recognition in the Drosophila ventral nerve cord
We exploit the morphological stereotypy and relative simplicity of the Drosophila nervous system to model the diverse neuronal morphologies of individual motor neurons and understand underlying principles of synaptic connectivity in a motor circuit. In our analysis, we use images depicting single neurons labeled with green fluorescent protein (GFP) and serially imaged with laser scanning confocal microscopy. We model morphology with a novel formulation of Conditional Random Fields, a hierarchical latent-state CRF, to capture the highly varying compartment-based structure of the neurons (soma-axon-dendrites). In the training phase, we follow two approaches: (i) hierarchical learning, were compartment labels are given, and (ii) latent-state learning, where compartment labels are not given in the training samples. We demonstrate the accuracy of our approach using wild-type MNs in the larval ventral nerve cord. However, our method can also be used for the identification of MN mutations, as well as the automated annotation of the motor circuitry in wild type and mutant animals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信