Naïve贝叶斯、PART和SMO对网页兴趣分类的性能分析

S. Diwandari, A. E. Permanasari, Indriana Hidayah
{"title":"Naïve贝叶斯、PART和SMO对网页兴趣分类的性能分析","authors":"S. Diwandari, A. E. Permanasari, Indriana Hidayah","doi":"10.1109/ISITIA.2015.7219950","DOIUrl":null,"url":null,"abstract":"User interaction with web sites generates a large amount of web access data stored in the web access logs. Those data can be used for e-commerce to conduct an evaluation of possessed website pages as one of the efforts to understand the desires of the user. Through classification techniques in web usage mining, we conducted an experiment to categorize a number of data obtained from the client log files in two groups namely interest page and un-interest page by using the model page interest estimation. The results obtained indicate that SMO algorithm forms a better classifier models with the result accuracy of 95.8904% and this result is higher when compared with two other algorithms. It can be concluded that the SMO algorithm is efficient in performing classification for this case.","PeriodicalId":124449,"journal":{"name":"2015 International Seminar on Intelligent Technology and Its Applications (ISITIA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance analysis of Naïve Bayes, PART and SMO for classification of page interest in web usage mining\",\"authors\":\"S. Diwandari, A. E. Permanasari, Indriana Hidayah\",\"doi\":\"10.1109/ISITIA.2015.7219950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User interaction with web sites generates a large amount of web access data stored in the web access logs. Those data can be used for e-commerce to conduct an evaluation of possessed website pages as one of the efforts to understand the desires of the user. Through classification techniques in web usage mining, we conducted an experiment to categorize a number of data obtained from the client log files in two groups namely interest page and un-interest page by using the model page interest estimation. The results obtained indicate that SMO algorithm forms a better classifier models with the result accuracy of 95.8904% and this result is higher when compared with two other algorithms. It can be concluded that the SMO algorithm is efficient in performing classification for this case.\",\"PeriodicalId\":124449,\"journal\":{\"name\":\"2015 International Seminar on Intelligent Technology and Its Applications (ISITIA)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Seminar on Intelligent Technology and Its Applications (ISITIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISITIA.2015.7219950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Seminar on Intelligent Technology and Its Applications (ISITIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITIA.2015.7219950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

用户与网站的交互会产生大量的web访问数据,这些数据存储在web访问日志中。这些数据可以用于电子商务,对拥有的网站页面进行评估,作为了解用户需求的努力之一。通过web使用挖掘中的分类技术,我们对从客户端日志文件中获得的大量数据进行了实验,使用模型页面兴趣估计将其分为兴趣页面和非兴趣页面两组。结果表明,SMO算法形成了更好的分类器模型,结果准确率为95.8904%,与其他两种算法相比,该结果更高。可以得出SMO算法对这种情况进行分类是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance analysis of Naïve Bayes, PART and SMO for classification of page interest in web usage mining
User interaction with web sites generates a large amount of web access data stored in the web access logs. Those data can be used for e-commerce to conduct an evaluation of possessed website pages as one of the efforts to understand the desires of the user. Through classification techniques in web usage mining, we conducted an experiment to categorize a number of data obtained from the client log files in two groups namely interest page and un-interest page by using the model page interest estimation. The results obtained indicate that SMO algorithm forms a better classifier models with the result accuracy of 95.8904% and this result is higher when compared with two other algorithms. It can be concluded that the SMO algorithm is efficient in performing classification for this case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信