无基础设施边缘计算的成本感知边缘资源探测:从最优停止到分层学习

Tao Ouyang, Xu Chen, Liekang Zeng, Zhi Zhou
{"title":"无基础设施边缘计算的成本感知边缘资源探测:从最优停止到分层学习","authors":"Tao Ouyang, Xu Chen, Liekang Zeng, Zhi Zhou","doi":"10.1109/RTSS46320.2019.00041","DOIUrl":null,"url":null,"abstract":"To meet the stringent requirement of artificial intelligence applications, such as face recognition and video streaming analytics, a resource-constrained device can offload its task to nearby resource-rich devices in edge computing. Resource awareness, as a prime prerequisite for offloading decision-making, is critical for achieving efficient collaborative computation performance. In this paper, we consider cost-aware edge resource probing (CERP) framework design for infrastructure-free edge computing wherein a task device self-organizes its resource probing for informed computation offloading. We first propose a multi-stage optimal stopping formulation for the problem, and derive the optimal probing strategy which reveals a nice multi-threshold structure. Accordingly, we then devise a data-driven layered learning mechanism for more practical and complicated application environments. Layered learning enables the task device to adaptively learn the optimal probing sequence and decision thresholds at runtime, aiming at deriving a good balance between the gain of choosing the best edge device and the accumulated cost of deep resource probing. We further conduct thorough performance evaluation of the proposed CERP schemes using both extensive numerical simulations and realistic system prototype implementation, which demonstrate the superior performance of CERP in the diverse application scenarios.","PeriodicalId":102892,"journal":{"name":"2019 IEEE Real-Time Systems Symposium (RTSS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Cost-Aware Edge Resource Probing for Infrastructure-Free Edge Computing: From Optimal Stopping to Layered Learning\",\"authors\":\"Tao Ouyang, Xu Chen, Liekang Zeng, Zhi Zhou\",\"doi\":\"10.1109/RTSS46320.2019.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To meet the stringent requirement of artificial intelligence applications, such as face recognition and video streaming analytics, a resource-constrained device can offload its task to nearby resource-rich devices in edge computing. Resource awareness, as a prime prerequisite for offloading decision-making, is critical for achieving efficient collaborative computation performance. In this paper, we consider cost-aware edge resource probing (CERP) framework design for infrastructure-free edge computing wherein a task device self-organizes its resource probing for informed computation offloading. We first propose a multi-stage optimal stopping formulation for the problem, and derive the optimal probing strategy which reveals a nice multi-threshold structure. Accordingly, we then devise a data-driven layered learning mechanism for more practical and complicated application environments. Layered learning enables the task device to adaptively learn the optimal probing sequence and decision thresholds at runtime, aiming at deriving a good balance between the gain of choosing the best edge device and the accumulated cost of deep resource probing. We further conduct thorough performance evaluation of the proposed CERP schemes using both extensive numerical simulations and realistic system prototype implementation, which demonstrate the superior performance of CERP in the diverse application scenarios.\",\"PeriodicalId\":102892,\"journal\":{\"name\":\"2019 IEEE Real-Time Systems Symposium (RTSS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Real-Time Systems Symposium (RTSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTSS46320.2019.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Real-Time Systems Symposium (RTSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS46320.2019.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

为了满足人脸识别和视频流分析等人工智能应用的严格要求,在边缘计算中,资源受限的设备可以将其任务卸载给附近资源丰富的设备。资源感知是实现高效协同计算性能的关键,是卸载决策的首要前提。在本文中,我们考虑了无基础设施边缘计算的成本感知边缘资源探测(CERP)框架设计,其中任务设备自组织其资源探测以实现知情的计算卸载。首先提出了该问题的多阶段最优停止公式,并推导出了具有良好多阈值结构的最优探测策略。因此,我们设计了一种数据驱动的分层学习机制,用于更实际和复杂的应用环境。分层学习使任务设备能够在运行时自适应学习最优探测序列和决策阈值,目的是在选择最佳边缘设备的收益与深度资源探测的累积成本之间取得良好的平衡。我们进一步通过广泛的数值模拟和真实的系统原型实现对所提出的CERP方案进行了全面的性能评估,证明了CERP在各种应用场景中的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cost-Aware Edge Resource Probing for Infrastructure-Free Edge Computing: From Optimal Stopping to Layered Learning
To meet the stringent requirement of artificial intelligence applications, such as face recognition and video streaming analytics, a resource-constrained device can offload its task to nearby resource-rich devices in edge computing. Resource awareness, as a prime prerequisite for offloading decision-making, is critical for achieving efficient collaborative computation performance. In this paper, we consider cost-aware edge resource probing (CERP) framework design for infrastructure-free edge computing wherein a task device self-organizes its resource probing for informed computation offloading. We first propose a multi-stage optimal stopping formulation for the problem, and derive the optimal probing strategy which reveals a nice multi-threshold structure. Accordingly, we then devise a data-driven layered learning mechanism for more practical and complicated application environments. Layered learning enables the task device to adaptively learn the optimal probing sequence and decision thresholds at runtime, aiming at deriving a good balance between the gain of choosing the best edge device and the accumulated cost of deep resource probing. We further conduct thorough performance evaluation of the proposed CERP schemes using both extensive numerical simulations and realistic system prototype implementation, which demonstrate the superior performance of CERP in the diverse application scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信