系统抽样下若干改进的总体均值估计

Shagufta Mehnaz, Shakeel Ahmed
{"title":"系统抽样下若干改进的总体均值估计","authors":"Shagufta Mehnaz, Shakeel Ahmed","doi":"10.52700/scir.v3i1.24","DOIUrl":null,"url":null,"abstract":"Auxiliary information is very important in constructing estimators for the population parameters for increasing the efficiency different sampling schemes. In this paper, we consider the problem of estimation of population mean using information on auxiliary variables in systematic sampling. We derive the expressions for the bias and mean squared error (MSE) of the suggested estimators up to the 1st degree of approximation. Proposed estimators are compared with usual mean estimator in systematic sampling scheme theoretically as well as empirically.","PeriodicalId":117051,"journal":{"name":"STATISTICS, COMPUTING AND INTERDISCIPLINARY RESEARCH","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Improved Estimators of Population Mean Under Systematic Sampling\",\"authors\":\"Shagufta Mehnaz, Shakeel Ahmed\",\"doi\":\"10.52700/scir.v3i1.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Auxiliary information is very important in constructing estimators for the population parameters for increasing the efficiency different sampling schemes. In this paper, we consider the problem of estimation of population mean using information on auxiliary variables in systematic sampling. We derive the expressions for the bias and mean squared error (MSE) of the suggested estimators up to the 1st degree of approximation. Proposed estimators are compared with usual mean estimator in systematic sampling scheme theoretically as well as empirically.\",\"PeriodicalId\":117051,\"journal\":{\"name\":\"STATISTICS, COMPUTING AND INTERDISCIPLINARY RESEARCH\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"STATISTICS, COMPUTING AND INTERDISCIPLINARY RESEARCH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52700/scir.v3i1.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"STATISTICS, COMPUTING AND INTERDISCIPLINARY RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52700/scir.v3i1.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高不同采样方案的效率,在构造总体参数估计时,辅助信息是非常重要的。本文研究了系统抽样中利用辅助变量信息估计总体均值的问题。我们导出了建议估计量的偏差和均方误差(MSE)的表达式,直至近似的一阶。从理论上和经验上比较了所提出的估计量与系统抽样方案中常用的均值估计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Improved Estimators of Population Mean Under Systematic Sampling
Auxiliary information is very important in constructing estimators for the population parameters for increasing the efficiency different sampling schemes. In this paper, we consider the problem of estimation of population mean using information on auxiliary variables in systematic sampling. We derive the expressions for the bias and mean squared error (MSE) of the suggested estimators up to the 1st degree of approximation. Proposed estimators are compared with usual mean estimator in systematic sampling scheme theoretically as well as empirically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信