三种用于心脏病预测的数据挖掘算法的比较

Noor Salah Hassan, Adnan Mohsin Abdulazeez, J. Saeed, Diyar Qader Zeebaree, Adel Al-zebari, F. Y. Ahmed
{"title":"三种用于心脏病预测的数据挖掘算法的比较","authors":"Noor Salah Hassan, Adnan Mohsin Abdulazeez, J. Saeed, Diyar Qader Zeebaree, Adel Al-zebari, F. Y. Ahmed","doi":"10.1109/ISIEA51897.2021.9509985","DOIUrl":null,"url":null,"abstract":"Heart disease is one of the most common causes of death worldwide. Real-time methods for forecasting heart disease from medical data sources that explain a patient's current health status are discussed in this paper. The proposed system's main aim is to find the best data mining algorithm for predicting heart disease with high accuracy. We suggested using Decision Tree (DT), Support Vector Machine (SVM) and Naïve Bayes (NB) algorithms. All of these algorithms are classified as supervised learning and work better with training data. The main purpose of using three algorithms is to see which one is the best at predicting heart disease. The result shows that the DT algorithm provides the best accuracy with less training time when compared to SVM and Naïve Bayes(NB).","PeriodicalId":336442,"journal":{"name":"2021 IEEE Symposium on Industrial Electronics & Applications (ISIEA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Compassion of Three Data Miming Algorithms for Heart Disease Prediction\",\"authors\":\"Noor Salah Hassan, Adnan Mohsin Abdulazeez, J. Saeed, Diyar Qader Zeebaree, Adel Al-zebari, F. Y. Ahmed\",\"doi\":\"10.1109/ISIEA51897.2021.9509985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart disease is one of the most common causes of death worldwide. Real-time methods for forecasting heart disease from medical data sources that explain a patient's current health status are discussed in this paper. The proposed system's main aim is to find the best data mining algorithm for predicting heart disease with high accuracy. We suggested using Decision Tree (DT), Support Vector Machine (SVM) and Naïve Bayes (NB) algorithms. All of these algorithms are classified as supervised learning and work better with training data. The main purpose of using three algorithms is to see which one is the best at predicting heart disease. The result shows that the DT algorithm provides the best accuracy with less training time when compared to SVM and Naïve Bayes(NB).\",\"PeriodicalId\":336442,\"journal\":{\"name\":\"2021 IEEE Symposium on Industrial Electronics & Applications (ISIEA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium on Industrial Electronics & Applications (ISIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIEA51897.2021.9509985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium on Industrial Electronics & Applications (ISIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIEA51897.2021.9509985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

心脏病是全世界最常见的死亡原因之一。本文讨论了从解释患者当前健康状况的医疗数据源预测心脏病的实时方法。该系统的主要目的是寻找最佳的数据挖掘算法,以高精度地预测心脏病。我们建议使用决策树(DT)、支持向量机(SVM)和Naïve贝叶斯(NB)算法。所有这些算法都被归类为监督学习,并且可以更好地处理训练数据。使用三种算法的主要目的是看哪一种最能预测心脏病。结果表明,与SVM和Naïve贝叶斯(NB)相比,DT算法在训练时间更短的情况下提供了最好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Compassion of Three Data Miming Algorithms for Heart Disease Prediction
Heart disease is one of the most common causes of death worldwide. Real-time methods for forecasting heart disease from medical data sources that explain a patient's current health status are discussed in this paper. The proposed system's main aim is to find the best data mining algorithm for predicting heart disease with high accuracy. We suggested using Decision Tree (DT), Support Vector Machine (SVM) and Naïve Bayes (NB) algorithms. All of these algorithms are classified as supervised learning and work better with training data. The main purpose of using three algorithms is to see which one is the best at predicting heart disease. The result shows that the DT algorithm provides the best accuracy with less training time when compared to SVM and Naïve Bayes(NB).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信