多维密度导数的交叉验证带宽选择

M. Baird
{"title":"多维密度导数的交叉验证带宽选择","authors":"M. Baird","doi":"10.2139/ssrn.2533259","DOIUrl":null,"url":null,"abstract":"Little attention has been given to the effect of higher order kernels for bandwidth selection for multidimensional derivatives of densities. This paper investigates the extension of cross validation methods to higher dimensions for the derivative of an unconditional joint density. I present and derive different cross validation criteria for arbitrary kernel order and density dimension, and show consistency of the estimator. Doing a Monte Carlo simulation study for various orders of kernels in the Gaussian family and additionally comparing a weighted integrated square error criterion, I find that higher order kernels become increasingly important as the dimension of the distribution increases. I find that standard cross validation selectors generally outperform the weighted integrated square error cross validation criteria. Using the infinite order Dirichlet kernel tends to have the best results.","PeriodicalId":340671,"journal":{"name":"RAND Corporation Law","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cross Validation Bandwidth Selection for Derivatives of Multidimensional Densities\",\"authors\":\"M. Baird\",\"doi\":\"10.2139/ssrn.2533259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Little attention has been given to the effect of higher order kernels for bandwidth selection for multidimensional derivatives of densities. This paper investigates the extension of cross validation methods to higher dimensions for the derivative of an unconditional joint density. I present and derive different cross validation criteria for arbitrary kernel order and density dimension, and show consistency of the estimator. Doing a Monte Carlo simulation study for various orders of kernels in the Gaussian family and additionally comparing a weighted integrated square error criterion, I find that higher order kernels become increasingly important as the dimension of the distribution increases. I find that standard cross validation selectors generally outperform the weighted integrated square error cross validation criteria. Using the infinite order Dirichlet kernel tends to have the best results.\",\"PeriodicalId\":340671,\"journal\":{\"name\":\"RAND Corporation Law\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAND Corporation Law\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2533259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAND Corporation Law","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2533259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

高阶核对密度的多维导数的带宽选择的影响很少得到关注。本文研究了将交叉验证方法推广到高维的无条件关节密度导数问题。提出并推导了任意核阶数和密度维数的交叉验证准则,并证明了估计量的一致性。通过对高斯族中各种阶核的蒙特卡罗模拟研究,并比较加权积分平方误差准则,我发现随着分布维数的增加,高阶核变得越来越重要。我发现标准交叉验证选择器通常优于加权积分平方误差交叉验证标准。使用无限阶的狄利克雷核趋向于得到最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross Validation Bandwidth Selection for Derivatives of Multidimensional Densities
Little attention has been given to the effect of higher order kernels for bandwidth selection for multidimensional derivatives of densities. This paper investigates the extension of cross validation methods to higher dimensions for the derivative of an unconditional joint density. I present and derive different cross validation criteria for arbitrary kernel order and density dimension, and show consistency of the estimator. Doing a Monte Carlo simulation study for various orders of kernels in the Gaussian family and additionally comparing a weighted integrated square error criterion, I find that higher order kernels become increasingly important as the dimension of the distribution increases. I find that standard cross validation selectors generally outperform the weighted integrated square error cross validation criteria. Using the infinite order Dirichlet kernel tends to have the best results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信