基于深度卷积神经网络的航空图像车辆分类

P. Mazurek, Dorota Oszutowska-Mazurek
{"title":"基于深度卷积神经网络的航空图像车辆分类","authors":"P. Mazurek, Dorota Oszutowska-Mazurek","doi":"10.1109/MMAR.2018.8485870","DOIUrl":null,"url":null,"abstract":"Aerial imagery is important for delivery of spatial information from large surface areas. The detection and classification of vehicles in use or parked is important for the analysis of road traffic or agricultural analyzes. Modified VEDAI database with reduced number to 9 classes of vehicles is used. Deep convolutional neural network is tested for the classification purposes and the influence of number of kernels in the first layer is investigated. Achieved results show similarity between kernels for different setups. Most kernels are radial and classification results are related to the number of used classes.","PeriodicalId":201658,"journal":{"name":"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Vehicles in Aerial Imagery Using Deep Convolutional Neural Networks\",\"authors\":\"P. Mazurek, Dorota Oszutowska-Mazurek\",\"doi\":\"10.1109/MMAR.2018.8485870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerial imagery is important for delivery of spatial information from large surface areas. The detection and classification of vehicles in use or parked is important for the analysis of road traffic or agricultural analyzes. Modified VEDAI database with reduced number to 9 classes of vehicles is used. Deep convolutional neural network is tested for the classification purposes and the influence of number of kernels in the first layer is investigated. Achieved results show similarity between kernels for different setups. Most kernels are radial and classification results are related to the number of used classes.\",\"PeriodicalId\":201658,\"journal\":{\"name\":\"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMAR.2018.8485870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2018.8485870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

航空图像对于从大的表面区域传递空间信息是重要的。在使用或停放车辆的检测和分类对于道路交通分析或农业分析具有重要意义。使用改进的VEDAI数据库,将车辆数量减少到9类。对深度卷积神经网络进行了分类测试,并研究了第一层核数的影响。所获得的结果显示了不同设置下内核之间的相似性。大多数核是径向的,分类结果与使用的类的数量有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Vehicles in Aerial Imagery Using Deep Convolutional Neural Networks
Aerial imagery is important for delivery of spatial information from large surface areas. The detection and classification of vehicles in use or parked is important for the analysis of road traffic or agricultural analyzes. Modified VEDAI database with reduced number to 9 classes of vehicles is used. Deep convolutional neural network is tested for the classification purposes and the influence of number of kernels in the first layer is investigated. Achieved results show similarity between kernels for different setups. Most kernels are radial and classification results are related to the number of used classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信