{"title":"存储档案的海量空闲磁盘阵列","authors":"Dennis Colarelli, D. Grunwald","doi":"10.1109/SC.2002.10058","DOIUrl":null,"url":null,"abstract":"The declining costs of commodity disk drives is rapidly changing the economics of deploying large amounts of online or near-line storage. Conventional mass storage systems use either high performance RAID clusters, automated tape libraries or a combination of tape and disk. In this paper, we analyze an alternative design using massive arrays of idle disks, or MAID. We argue that this storage organization provides storage densities matching or exceeding those of tape libraries with performance similar to disk arrays. Moreover, we show that with effective power management of individual drives, this performance can be achieved using a very small power budget. In particular, we show that our power management strategy can result in the performance comparable to an always-on RAID system while using 1/15th the power of such a RAID system.","PeriodicalId":302800,"journal":{"name":"ACM/IEEE SC 2002 Conference (SC'02)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"410","resultStr":"{\"title\":\"Massive Arrays of Idle Disks For Storage Archives\",\"authors\":\"Dennis Colarelli, D. Grunwald\",\"doi\":\"10.1109/SC.2002.10058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The declining costs of commodity disk drives is rapidly changing the economics of deploying large amounts of online or near-line storage. Conventional mass storage systems use either high performance RAID clusters, automated tape libraries or a combination of tape and disk. In this paper, we analyze an alternative design using massive arrays of idle disks, or MAID. We argue that this storage organization provides storage densities matching or exceeding those of tape libraries with performance similar to disk arrays. Moreover, we show that with effective power management of individual drives, this performance can be achieved using a very small power budget. In particular, we show that our power management strategy can result in the performance comparable to an always-on RAID system while using 1/15th the power of such a RAID system.\",\"PeriodicalId\":302800,\"journal\":{\"name\":\"ACM/IEEE SC 2002 Conference (SC'02)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"410\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE SC 2002 Conference (SC'02)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.2002.10058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2002 Conference (SC'02)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2002.10058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The declining costs of commodity disk drives is rapidly changing the economics of deploying large amounts of online or near-line storage. Conventional mass storage systems use either high performance RAID clusters, automated tape libraries or a combination of tape and disk. In this paper, we analyze an alternative design using massive arrays of idle disks, or MAID. We argue that this storage organization provides storage densities matching or exceeding those of tape libraries with performance similar to disk arrays. Moreover, we show that with effective power management of individual drives, this performance can be achieved using a very small power budget. In particular, we show that our power management strategy can result in the performance comparable to an always-on RAID system while using 1/15th the power of such a RAID system.