组合便携式拉曼探针:用于治疗的c -纳米管

Ashwinkumar A. Bhirde, Xiaoyuan Chen
{"title":"组合便携式拉曼探针:用于治疗的c -纳米管","authors":"Ashwinkumar A. Bhirde, Xiaoyuan Chen","doi":"10.1109/LISSA.2011.5754185","DOIUrl":null,"url":null,"abstract":"Recently portable Raman probes have emerged into markets with a variety of applications including carbon nanotube (CNTs) characterization. Aqueous dispersed carbon nanotubes (CNTs) have shown a lot of promise towards biomedical application like drug / gene delivery vectors, photo-thermal therapy, and photoacoustic imaging. In this study we report the simultaneous detection and irradiation of carbon nanotubes in live cancer cells using a portable Raman probe. A portable handheld Raman instrument was utilized for dual purpose, as a CNT detector and as an irradiating laser source. Single walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) were dispersed in an aqueous solution using a lipid-polymer (LP) coat which formed highly stable dispersions both in buffer and cell media. The LP coated SWCNTs and MWCNTs aqueous dispersions were characterized by atomic force microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy and Raman spectroscopy. The cellular uptake of the LP dispersed SWCNTs and MWCNTs was carried out using confocal microscopy, where the FITC labeled nanotube conjugates were found internalized by the breast cancer cells confirmed by Z-stack fluorescence confocal imaging. The in vitro biocompatibility of SWCNTs and MWCNTs, assessed using cell viability MTT assay, found that the nanotube dispersions did not hinder the cell proliferation of breast cancer cells at the dosages tested. Breast cancer cells treated with SWCNTs and MWCNTs were simultaneously detected and irradiated live in vitro using the portable Raman probe. Apoptotic TUNEL assay carried out on the breast cancer cells fixed after laser irradiation confirmed the cell death only in presence of the nanotube dispersions. For the first time we show that both SWCNTs and MWCNTs could be selectively irradiated by specifically detecting the CNTs in cancer cells using a simple handheld Raman instrument in three dimensionally grown cell culture. A combination of handheld Raman instrumentation used along with carbon nanomaterials could help treat various diseases like cancer.","PeriodicalId":227469,"journal":{"name":"2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinational portable raman probes: C-nanotubes for theranostics application\",\"authors\":\"Ashwinkumar A. Bhirde, Xiaoyuan Chen\",\"doi\":\"10.1109/LISSA.2011.5754185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently portable Raman probes have emerged into markets with a variety of applications including carbon nanotube (CNTs) characterization. Aqueous dispersed carbon nanotubes (CNTs) have shown a lot of promise towards biomedical application like drug / gene delivery vectors, photo-thermal therapy, and photoacoustic imaging. In this study we report the simultaneous detection and irradiation of carbon nanotubes in live cancer cells using a portable Raman probe. A portable handheld Raman instrument was utilized for dual purpose, as a CNT detector and as an irradiating laser source. Single walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) were dispersed in an aqueous solution using a lipid-polymer (LP) coat which formed highly stable dispersions both in buffer and cell media. The LP coated SWCNTs and MWCNTs aqueous dispersions were characterized by atomic force microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy and Raman spectroscopy. The cellular uptake of the LP dispersed SWCNTs and MWCNTs was carried out using confocal microscopy, where the FITC labeled nanotube conjugates were found internalized by the breast cancer cells confirmed by Z-stack fluorescence confocal imaging. The in vitro biocompatibility of SWCNTs and MWCNTs, assessed using cell viability MTT assay, found that the nanotube dispersions did not hinder the cell proliferation of breast cancer cells at the dosages tested. Breast cancer cells treated with SWCNTs and MWCNTs were simultaneously detected and irradiated live in vitro using the portable Raman probe. Apoptotic TUNEL assay carried out on the breast cancer cells fixed after laser irradiation confirmed the cell death only in presence of the nanotube dispersions. For the first time we show that both SWCNTs and MWCNTs could be selectively irradiated by specifically detecting the CNTs in cancer cells using a simple handheld Raman instrument in three dimensionally grown cell culture. A combination of handheld Raman instrumentation used along with carbon nanomaterials could help treat various diseases like cancer.\",\"PeriodicalId\":227469,\"journal\":{\"name\":\"2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LISSA.2011.5754185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LISSA.2011.5754185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,便携式拉曼探针已经进入市场,具有各种应用,包括碳纳米管(CNTs)的表征。水相分散碳纳米管(CNTs)在药物/基因传递载体、光热治疗和光声成像等生物医学领域的应用前景广阔。在这项研究中,我们报告了使用便携式拉曼探针同时检测和照射活癌细胞中的碳纳米管。便携式手持式拉曼仪器被用于双重目的,作为碳纳米管探测器和作为一个照射激光源。单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs)使用脂质聚合物(LP)涂层分散在水溶液中,在缓冲液和细胞介质中形成高度稳定的分散体。采用原子力显微镜、透射电子显微镜、动态光散射、傅里叶变换红外光谱和拉曼光谱对LP包覆的SWCNTs和MWCNTs水相分散体进行表征。使用共聚焦显微镜观察LP分散的SWCNTs和MWCNTs的细胞摄取,其中FITC标记的纳米管偶联物被z堆叠荧光共聚焦成像证实的乳腺癌细胞内化。使用细胞活力MTT法评估SWCNTs和MWCNTs的体外生物相容性,发现纳米管分散体在测试剂量下不会阻碍乳腺癌细胞的增殖。使用便携式拉曼探针同时检测和照射经SWCNTs和MWCNTs处理的乳腺癌细胞。对激光照射后固定的乳腺癌细胞进行凋亡TUNEL实验,证实只有纳米管分散体存在时细胞才会死亡。我们首次证明,在三维培养细胞中,使用简单的手持式拉曼仪器特异性检测癌细胞中的CNTs,可以选择性地照射SWCNTs和MWCNTs。手持拉曼仪器与碳纳米材料的结合可以帮助治疗各种疾病,如癌症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combinational portable raman probes: C-nanotubes for theranostics application
Recently portable Raman probes have emerged into markets with a variety of applications including carbon nanotube (CNTs) characterization. Aqueous dispersed carbon nanotubes (CNTs) have shown a lot of promise towards biomedical application like drug / gene delivery vectors, photo-thermal therapy, and photoacoustic imaging. In this study we report the simultaneous detection and irradiation of carbon nanotubes in live cancer cells using a portable Raman probe. A portable handheld Raman instrument was utilized for dual purpose, as a CNT detector and as an irradiating laser source. Single walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) were dispersed in an aqueous solution using a lipid-polymer (LP) coat which formed highly stable dispersions both in buffer and cell media. The LP coated SWCNTs and MWCNTs aqueous dispersions were characterized by atomic force microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy and Raman spectroscopy. The cellular uptake of the LP dispersed SWCNTs and MWCNTs was carried out using confocal microscopy, where the FITC labeled nanotube conjugates were found internalized by the breast cancer cells confirmed by Z-stack fluorescence confocal imaging. The in vitro biocompatibility of SWCNTs and MWCNTs, assessed using cell viability MTT assay, found that the nanotube dispersions did not hinder the cell proliferation of breast cancer cells at the dosages tested. Breast cancer cells treated with SWCNTs and MWCNTs were simultaneously detected and irradiated live in vitro using the portable Raman probe. Apoptotic TUNEL assay carried out on the breast cancer cells fixed after laser irradiation confirmed the cell death only in presence of the nanotube dispersions. For the first time we show that both SWCNTs and MWCNTs could be selectively irradiated by specifically detecting the CNTs in cancer cells using a simple handheld Raman instrument in three dimensionally grown cell culture. A combination of handheld Raman instrumentation used along with carbon nanomaterials could help treat various diseases like cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信