基于改进中心网的人脸特征检测方法

Zhou Sheng-an
{"title":"基于改进中心网的人脸特征检测方法","authors":"Zhou Sheng-an","doi":"10.1109/ICSCDE54196.2021.00048","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of CenterNet detection model with many parameters, long convergence time and slow detection speed, this paper proposed an real time detection method. In this method, mobileNet is used as the back-end to extract the features of the scene before the image, and then combined with the lightweight CentrerNet detection head to detect. Based on CelebA and MSCOCO datasets, the results show thatOur Method model has the best balance in trainning time, detection speed and accuracy, and better application value compared with the improved reference model of CenterNet_ Shuffler and CenterNet_ ResNet18.","PeriodicalId":208108,"journal":{"name":"2021 International Conference of Social Computing and Digital Economy (ICSCDE)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facial features detection method based on improved centernet\",\"authors\":\"Zhou Sheng-an\",\"doi\":\"10.1109/ICSCDE54196.2021.00048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problems of CenterNet detection model with many parameters, long convergence time and slow detection speed, this paper proposed an real time detection method. In this method, mobileNet is used as the back-end to extract the features of the scene before the image, and then combined with the lightweight CentrerNet detection head to detect. Based on CelebA and MSCOCO datasets, the results show thatOur Method model has the best balance in trainning time, detection speed and accuracy, and better application value compared with the improved reference model of CenterNet_ Shuffler and CenterNet_ ResNet18.\",\"PeriodicalId\":208108,\"journal\":{\"name\":\"2021 International Conference of Social Computing and Digital Economy (ICSCDE)\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference of Social Computing and Digital Economy (ICSCDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCDE54196.2021.00048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference of Social Computing and Digital Economy (ICSCDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCDE54196.2021.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对CenterNet检测模型参数多、收敛时间长、检测速度慢等问题,提出了一种实时检测方法。该方法以mobileNet作为后端提取图像前的场景特征,再结合轻量级的CentrerNet检测头进行检测。基于CelebA和MSCOCO数据集的结果表明,与改进后的CenterNet_ Shuffler和CenterNet_ ResNet18参考模型相比,本文方法模型在训练时间、检测速度和准确率方面具有最佳的平衡,具有更好的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facial features detection method based on improved centernet
Aiming at the problems of CenterNet detection model with many parameters, long convergence time and slow detection speed, this paper proposed an real time detection method. In this method, mobileNet is used as the back-end to extract the features of the scene before the image, and then combined with the lightweight CentrerNet detection head to detect. Based on CelebA and MSCOCO datasets, the results show thatOur Method model has the best balance in trainning time, detection speed and accuracy, and better application value compared with the improved reference model of CenterNet_ Shuffler and CenterNet_ ResNet18.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信