有机Alq3、铁磁La2/3Sr1/3MnO3和Fe3O4杂化双层结构的制备及性能

B. Vengalis, K. Sliuziene, I. Černiukė, R. Butkutė, V. Lisauskas, A. Maneikis
{"title":"有机Alq3、铁磁La2/3Sr1/3MnO3和Fe3O4杂化双层结构的制备及性能","authors":"B. Vengalis, K. Sliuziene, I. Černiukė, R. Butkutė, V. Lisauskas, A. Maneikis","doi":"10.1117/12.815942","DOIUrl":null,"url":null,"abstract":"We report preparation and properties of hybrid bilayer structures composed of the organic semiconductor, 8-hydroxyquinoline aluminum (Alq3), p-type Si and two ferromagnetic oxides, namely, colossal magnetoresistance manganite, La2/3Sr1/3MnO3 (LSMO), and magnetite (Fe3O4). Thin Alq3 films were thermally evaporated in vacuum. The bottom LSMO films were grown in-situ at 750°C by dc magnetron sputtering on crystalline SrTiO3 while Fe3O4 films were magnetron sputtered at 400°C on glass. Current versus voltage in a case of vertical current flow has been investigated for the heterojunctions. The investigations revealed dominating role of thermoionic emission in a barrier of Schottky type for the Alq3/p-Si heterojunction while a mechanism based on carrier tunnelling through an interface and space charge limited current processes were considered to explain nonlinear electrical transport in the Alq3/LSMO, Alq3/ Fe3O4 heterojunctions. The Alq3/LSMO demonstrated magnetoresistance values up to 11 % (at T=240 K and B=1 T).","PeriodicalId":273853,"journal":{"name":"International Conference on Advanced Optical Materials and Devices","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Preparation and properties of hybrid bilayer structures based on organic Alq3, ferromagnetic La2/3Sr1/3MnO3 and Fe3O4\",\"authors\":\"B. Vengalis, K. Sliuziene, I. Černiukė, R. Butkutė, V. Lisauskas, A. Maneikis\",\"doi\":\"10.1117/12.815942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report preparation and properties of hybrid bilayer structures composed of the organic semiconductor, 8-hydroxyquinoline aluminum (Alq3), p-type Si and two ferromagnetic oxides, namely, colossal magnetoresistance manganite, La2/3Sr1/3MnO3 (LSMO), and magnetite (Fe3O4). Thin Alq3 films were thermally evaporated in vacuum. The bottom LSMO films were grown in-situ at 750°C by dc magnetron sputtering on crystalline SrTiO3 while Fe3O4 films were magnetron sputtered at 400°C on glass. Current versus voltage in a case of vertical current flow has been investigated for the heterojunctions. The investigations revealed dominating role of thermoionic emission in a barrier of Schottky type for the Alq3/p-Si heterojunction while a mechanism based on carrier tunnelling through an interface and space charge limited current processes were considered to explain nonlinear electrical transport in the Alq3/LSMO, Alq3/ Fe3O4 heterojunctions. The Alq3/LSMO demonstrated magnetoresistance values up to 11 % (at T=240 K and B=1 T).\",\"PeriodicalId\":273853,\"journal\":{\"name\":\"International Conference on Advanced Optical Materials and Devices\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Advanced Optical Materials and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.815942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Advanced Optical Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.815942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文报道了由有机半导体、8-羟基喹啉铝(Alq3)、p型硅和两种铁磁氧化物La2/3Sr1/3MnO3 (LSMO)和磁铁矿(Fe3O4)组成的杂化双层结构的制备和性能。薄Alq3薄膜在真空中热蒸发。下部LSMO薄膜在750℃的温度下在SrTiO3晶体上原位生长,Fe3O4薄膜在400℃的温度下在玻璃上原位磁控溅射生长。在垂直电流流动的情况下,研究了异质结的电流与电压的关系。研究表明,热离子发射在Alq3/p-Si异质结的肖特基型势垒中起主导作用,而基于载流子隧穿界面和空间电荷限制电流过程的机制被认为可以解释Alq3/LSMO, Alq3/ Fe3O4异质结中的非线性电输运。Alq3/LSMO的磁阻值高达11%(在T=240 K和B=1 T时)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation and properties of hybrid bilayer structures based on organic Alq3, ferromagnetic La2/3Sr1/3MnO3 and Fe3O4
We report preparation and properties of hybrid bilayer structures composed of the organic semiconductor, 8-hydroxyquinoline aluminum (Alq3), p-type Si and two ferromagnetic oxides, namely, colossal magnetoresistance manganite, La2/3Sr1/3MnO3 (LSMO), and magnetite (Fe3O4). Thin Alq3 films were thermally evaporated in vacuum. The bottom LSMO films were grown in-situ at 750°C by dc magnetron sputtering on crystalline SrTiO3 while Fe3O4 films were magnetron sputtered at 400°C on glass. Current versus voltage in a case of vertical current flow has been investigated for the heterojunctions. The investigations revealed dominating role of thermoionic emission in a barrier of Schottky type for the Alq3/p-Si heterojunction while a mechanism based on carrier tunnelling through an interface and space charge limited current processes were considered to explain nonlinear electrical transport in the Alq3/LSMO, Alq3/ Fe3O4 heterojunctions. The Alq3/LSMO demonstrated magnetoresistance values up to 11 % (at T=240 K and B=1 T).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信