{"title":"使用加密原语混淆任意计算","authors":"N. G. Tsoutsos, M. Maniatakos","doi":"10.1109/IDT.2015.7396726","DOIUrl":null,"url":null,"abstract":"The breakthrough of fully homomorphic encryption (FHE) enables privacy-preserving arbitrary computation in the cloud, supporting both addition and multiplication over encrypted data. Current FHE implementations, however, suffer from high performance overheads and require expensive boot-strapping operations to decrease ciphertext noise. In this work, we discuss how homomorphic encryption primitives can implement a functionally complete set of homomorphic operations and enable arbitrary computation that is outsourced by a single party. We focus on obfuscated computation with or without special look-up tables, to enable branch decisions over encrypted values while preserving privacy. Since partial homomorphic encryption is orders of magnitude less expensive than FHE, it can be more practical for privacy-preserving applications in the cloud.","PeriodicalId":321810,"journal":{"name":"2015 10th International Design & Test Symposium (IDT)","volume":"60 25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Obfuscated arbitrary computation using cryptographic primitives\",\"authors\":\"N. G. Tsoutsos, M. Maniatakos\",\"doi\":\"10.1109/IDT.2015.7396726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The breakthrough of fully homomorphic encryption (FHE) enables privacy-preserving arbitrary computation in the cloud, supporting both addition and multiplication over encrypted data. Current FHE implementations, however, suffer from high performance overheads and require expensive boot-strapping operations to decrease ciphertext noise. In this work, we discuss how homomorphic encryption primitives can implement a functionally complete set of homomorphic operations and enable arbitrary computation that is outsourced by a single party. We focus on obfuscated computation with or without special look-up tables, to enable branch decisions over encrypted values while preserving privacy. Since partial homomorphic encryption is orders of magnitude less expensive than FHE, it can be more practical for privacy-preserving applications in the cloud.\",\"PeriodicalId\":321810,\"journal\":{\"name\":\"2015 10th International Design & Test Symposium (IDT)\",\"volume\":\"60 25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Design & Test Symposium (IDT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDT.2015.7396726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Design & Test Symposium (IDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDT.2015.7396726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Obfuscated arbitrary computation using cryptographic primitives
The breakthrough of fully homomorphic encryption (FHE) enables privacy-preserving arbitrary computation in the cloud, supporting both addition and multiplication over encrypted data. Current FHE implementations, however, suffer from high performance overheads and require expensive boot-strapping operations to decrease ciphertext noise. In this work, we discuss how homomorphic encryption primitives can implement a functionally complete set of homomorphic operations and enable arbitrary computation that is outsourced by a single party. We focus on obfuscated computation with or without special look-up tables, to enable branch decisions over encrypted values while preserving privacy. Since partial homomorphic encryption is orders of magnitude less expensive than FHE, it can be more practical for privacy-preserving applications in the cloud.