用硬件沙箱击败无人机干扰

J. Mead, C. Bobda, Taylor J. L. Whitaker
{"title":"用硬件沙箱击败无人机干扰","authors":"J. Mead, C. Bobda, Taylor J. L. Whitaker","doi":"10.1109/AsianHOST.2016.7835557","DOIUrl":null,"url":null,"abstract":"In this work, we concern ourselves with the security of drone systems under jamming-based attacks. The focus is on design and synthesis structure with the anti-jamming security needs of drone systems. We explore a relatively new concept known as hardware sandboxing, to provide runtime monitoring of boundary signals and isolation through resource virtualization for non-trusted system-on-chip (SoC) components. We utilize Field Programmable Gate Array (FPGA) based development and target embedded Linux for our drone hardware/software system containing the hardware sandbox. We design and implement our working concept on the Digilent Zybo FPGA, which uses the Xilinx Zynq system. Our design is validated via simulation-based tests to mimic jamming attacks and standalone, stationary tests with commercial transmitter and receiver equipment. In both cases, we are successful in detecting and isolating unwanted behavior.","PeriodicalId":394462,"journal":{"name":"2016 IEEE Asian Hardware-Oriented Security and Trust (AsianHOST)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Defeating drone jamming with hardware sandboxing\",\"authors\":\"J. Mead, C. Bobda, Taylor J. L. Whitaker\",\"doi\":\"10.1109/AsianHOST.2016.7835557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we concern ourselves with the security of drone systems under jamming-based attacks. The focus is on design and synthesis structure with the anti-jamming security needs of drone systems. We explore a relatively new concept known as hardware sandboxing, to provide runtime monitoring of boundary signals and isolation through resource virtualization for non-trusted system-on-chip (SoC) components. We utilize Field Programmable Gate Array (FPGA) based development and target embedded Linux for our drone hardware/software system containing the hardware sandbox. We design and implement our working concept on the Digilent Zybo FPGA, which uses the Xilinx Zynq system. Our design is validated via simulation-based tests to mimic jamming attacks and standalone, stationary tests with commercial transmitter and receiver equipment. In both cases, we are successful in detecting and isolating unwanted behavior.\",\"PeriodicalId\":394462,\"journal\":{\"name\":\"2016 IEEE Asian Hardware-Oriented Security and Trust (AsianHOST)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Asian Hardware-Oriented Security and Trust (AsianHOST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AsianHOST.2016.7835557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Asian Hardware-Oriented Security and Trust (AsianHOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AsianHOST.2016.7835557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在这项工作中,我们关注无人机系统在基于干扰的攻击下的安全性。重点研究无人机系统抗干扰安全需求的设计与综合结构。我们探索了一个相对较新的概念,即硬件沙箱,通过资源虚拟化为非可信的片上系统(SoC)组件提供边界信号和隔离的运行时监控。我们利用基于现场可编程门阵列(FPGA)的开发和目标嵌入式Linux为我们的无人机硬件/软件系统包含硬件沙盒。我们在使用Xilinx Zynq系统的Digilent Zybo FPGA上设计并实现了我们的工作概念。我们的设计通过基于仿真的测试来验证,以模拟干扰攻击以及商用发射机和接收机设备的独立、固定测试。在这两种情况下,我们都成功地发现并隔离了不想要的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defeating drone jamming with hardware sandboxing
In this work, we concern ourselves with the security of drone systems under jamming-based attacks. The focus is on design and synthesis structure with the anti-jamming security needs of drone systems. We explore a relatively new concept known as hardware sandboxing, to provide runtime monitoring of boundary signals and isolation through resource virtualization for non-trusted system-on-chip (SoC) components. We utilize Field Programmable Gate Array (FPGA) based development and target embedded Linux for our drone hardware/software system containing the hardware sandbox. We design and implement our working concept on the Digilent Zybo FPGA, which uses the Xilinx Zynq system. Our design is validated via simulation-based tests to mimic jamming attacks and standalone, stationary tests with commercial transmitter and receiver equipment. In both cases, we are successful in detecting and isolating unwanted behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信