Frobenius李代数M_3 (R)⊕gl_3 (R)上的拟结合代数

Henti Henti, E. Kurniadi, E. Carnia
{"title":"Frobenius李代数M_3 (R)⊕gl_3 (R)上的拟结合代数","authors":"Henti Henti, E. Kurniadi, E. Carnia","doi":"10.24042/AJPM.V12I1.8485","DOIUrl":null,"url":null,"abstract":"In this paper, we study the quasi-associative algebra property for the real Frobenius  Lie algebra  of dimension 18. The work aims  to prove that  is a quasi-associative algebra and to compute its formulas explicitly. To achieve this aim, we apply the literature reviews method corresponding to Frobenius Lie algebras, Frobenius functionals, and the structures of quasi-associative algebras. In the first step, we choose a Frobenius functional determined by direct computations of a bracket matrix of  and in the second step, using an induced symplectic structure, we obtain the explicit formulas of quasi-associative algebras for . As the results, we proved that  has the quasi-associative algebras property, and we gave their formulas explicitly. For future research, the case of the quasi-associative algebras on   is still an open problem to be investigated. Our result can motivate to solve this problem.  ","PeriodicalId":385020,"journal":{"name":"Al-Jabar : Jurnal Pendidikan Matematika","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quasi-Associative Algebras on the Frobenius Lie Algebra M_3 (R)⊕gl_3 (R)\",\"authors\":\"Henti Henti, E. Kurniadi, E. Carnia\",\"doi\":\"10.24042/AJPM.V12I1.8485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the quasi-associative algebra property for the real Frobenius  Lie algebra  of dimension 18. The work aims  to prove that  is a quasi-associative algebra and to compute its formulas explicitly. To achieve this aim, we apply the literature reviews method corresponding to Frobenius Lie algebras, Frobenius functionals, and the structures of quasi-associative algebras. In the first step, we choose a Frobenius functional determined by direct computations of a bracket matrix of  and in the second step, using an induced symplectic structure, we obtain the explicit formulas of quasi-associative algebras for . As the results, we proved that  has the quasi-associative algebras property, and we gave their formulas explicitly. For future research, the case of the quasi-associative algebras on   is still an open problem to be investigated. Our result can motivate to solve this problem.  \",\"PeriodicalId\":385020,\"journal\":{\"name\":\"Al-Jabar : Jurnal Pendidikan Matematika\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Jabar : Jurnal Pendidikan Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24042/AJPM.V12I1.8485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Jabar : Jurnal Pendidikan Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24042/AJPM.V12I1.8485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了18维实Frobenius李代数的拟结合代数性质。本文的目的是证明它是一个拟结合代数,并明确地计算出它的公式。为了达到这一目的,我们应用了与Frobenius李代数、Frobenius泛函和拟结合代数结构相对应的文献综述方法。在第一步中,我们选择了一个Frobenius泛函,该泛函由和的括号矩阵直接计算确定;在第二步中,我们利用一个诱导辛结构,得到了的拟结合代数的显式公式。作为结果,我们证明了它具有拟结合代数的性质,并给出了它们的显式公式。对于今后的研究,上的拟结合代数的情况仍然是一个有待研究的开放性问题。我们的研究结果对解决这一问题具有激励作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-Associative Algebras on the Frobenius Lie Algebra M_3 (R)⊕gl_3 (R)
In this paper, we study the quasi-associative algebra property for the real Frobenius  Lie algebra  of dimension 18. The work aims  to prove that  is a quasi-associative algebra and to compute its formulas explicitly. To achieve this aim, we apply the literature reviews method corresponding to Frobenius Lie algebras, Frobenius functionals, and the structures of quasi-associative algebras. In the first step, we choose a Frobenius functional determined by direct computations of a bracket matrix of  and in the second step, using an induced symplectic structure, we obtain the explicit formulas of quasi-associative algebras for . As the results, we proved that  has the quasi-associative algebras property, and we gave their formulas explicitly. For future research, the case of the quasi-associative algebras on   is still an open problem to be investigated. Our result can motivate to solve this problem.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信