通过自洽能量平衡-细胞蒙特卡罗器件模拟,在Si上表征GaN HEMT的电热特性

A. Latorre-Rey, Ky Merrill, J. Albrecht, M. Saraniti
{"title":"通过自洽能量平衡-细胞蒙特卡罗器件模拟,在Si上表征GaN HEMT的电热特性","authors":"A. Latorre-Rey, Ky Merrill, J. Albrecht, M. Saraniti","doi":"10.1109/CSICS.2017.8240440","DOIUrl":null,"url":null,"abstract":"In order to assess the mechanisms of self-heating observed in GaN HEMTs on Si substrates, we have performed the electro-thermal characterization of an experimental device in terms of the simulation of its DC characteristics through an expanded full band Monte Carlo particle-based simulator self-consistently coupled to an energy balance heat equation for phonons. The accurate temperature profiles obtained for the acoustic and optical phonon modes, showed that the location of the hot spot in the channel is not at the peak of the electric field, but it is shifted towards the drain up to 34nm. Also, the modeled IdVdsVgs space is improved as a result of including the self-heating effects, which modify the charge transport in the active layer of the device through the temperature dependence of the scattering mechanisms considered in the simulations.","PeriodicalId":129729,"journal":{"name":"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Electro-thermal characterization of GaN HEMT on Si through selfconsistent energy balance-cellular Monte Carlo device simulations\",\"authors\":\"A. Latorre-Rey, Ky Merrill, J. Albrecht, M. Saraniti\",\"doi\":\"10.1109/CSICS.2017.8240440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to assess the mechanisms of self-heating observed in GaN HEMTs on Si substrates, we have performed the electro-thermal characterization of an experimental device in terms of the simulation of its DC characteristics through an expanded full band Monte Carlo particle-based simulator self-consistently coupled to an energy balance heat equation for phonons. The accurate temperature profiles obtained for the acoustic and optical phonon modes, showed that the location of the hot spot in the channel is not at the peak of the electric field, but it is shifted towards the drain up to 34nm. Also, the modeled IdVdsVgs space is improved as a result of including the self-heating effects, which modify the charge transport in the active layer of the device through the temperature dependence of the scattering mechanisms considered in the simulations.\",\"PeriodicalId\":129729,\"journal\":{\"name\":\"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICS.2017.8240440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2017.8240440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了评估在Si衬底上的GaN hemt中观察到的自热机制,我们通过扩展的全波段蒙特卡罗粒子模拟器自一致耦合到声子的能量平衡热方程,对实验装置进行了电热表征,模拟了其直流特性。声子和光学声子模式的精确温度分布表明,通道中的热点位置不是在电场的峰值,而是向漏极移动,直至34nm。此外,由于考虑了自热效应,模拟的IdVdsVgs空间得到了改善,自热效应通过模拟中考虑的散射机制的温度依赖性改变了器件有源层中的电荷输运。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electro-thermal characterization of GaN HEMT on Si through selfconsistent energy balance-cellular Monte Carlo device simulations
In order to assess the mechanisms of self-heating observed in GaN HEMTs on Si substrates, we have performed the electro-thermal characterization of an experimental device in terms of the simulation of its DC characteristics through an expanded full band Monte Carlo particle-based simulator self-consistently coupled to an energy balance heat equation for phonons. The accurate temperature profiles obtained for the acoustic and optical phonon modes, showed that the location of the hot spot in the channel is not at the peak of the electric field, but it is shifted towards the drain up to 34nm. Also, the modeled IdVdsVgs space is improved as a result of including the self-heating effects, which modify the charge transport in the active layer of the device through the temperature dependence of the scattering mechanisms considered in the simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信