基于小波的非平稳扰动智能监测系统

A. Gaouda, S. Kanoun, M. Salama, A. Chikhani
{"title":"基于小波的非平稳扰动智能监测系统","authors":"A. Gaouda, S. Kanoun, M. Salama, A. Chikhani","doi":"10.1109/DRPT.2000.855643","DOIUrl":null,"url":null,"abstract":"This paper presents a wavelet-based procedure that will assist in automated detecting, classifying, and measuring of different power system disturbances. Two pattern recognition techniques are used to evaluate the efficiency of the features of the nonstationary signal in the wavelet domain. The paper also presents a new technique that can monitor the variations of the RMS value and any further changes in the nonstationary signal.","PeriodicalId":127287,"journal":{"name":"DRPT2000. International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. Proceedings (Cat. No.00EX382)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Wavelet-based intelligent system for monitoring non-stationary disturbances\",\"authors\":\"A. Gaouda, S. Kanoun, M. Salama, A. Chikhani\",\"doi\":\"10.1109/DRPT.2000.855643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a wavelet-based procedure that will assist in automated detecting, classifying, and measuring of different power system disturbances. Two pattern recognition techniques are used to evaluate the efficiency of the features of the nonstationary signal in the wavelet domain. The paper also presents a new technique that can monitor the variations of the RMS value and any further changes in the nonstationary signal.\",\"PeriodicalId\":127287,\"journal\":{\"name\":\"DRPT2000. International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. Proceedings (Cat. No.00EX382)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DRPT2000. International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. Proceedings (Cat. No.00EX382)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRPT.2000.855643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DRPT2000. International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. Proceedings (Cat. No.00EX382)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRPT.2000.855643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种基于小波的程序,可以帮助自动检测、分类和测量不同的电力系统干扰。采用两种模式识别技术来评估非平稳信号在小波域的特征效率。本文还提出了一种监测均方根值变化和非平稳信号进一步变化的新技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet-based intelligent system for monitoring non-stationary disturbances
This paper presents a wavelet-based procedure that will assist in automated detecting, classifying, and measuring of different power system disturbances. Two pattern recognition techniques are used to evaluate the efficiency of the features of the nonstationary signal in the wavelet domain. The paper also presents a new technique that can monitor the variations of the RMS value and any further changes in the nonstationary signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信