{"title":"基于随机反向传播学习算法的神经网络短期电力负荷预测","authors":"R. Hwang, Huang-Chu Huang, J. Hsieh","doi":"10.1109/PESW.2000.847623","DOIUrl":null,"url":null,"abstract":"In this paper, a short-term power load forecaster based on a neural network with stochastic back-propagation learning algorithm is developed. This modified learning rule can effectively help the load forecaster escape from a local minimum while it is trained. Consequently, the proposed load forecaster has more accurate prediction in forecasting operation. As a comparison, the same experiments are also performed by using a neural network with a traditional back-propagation learning rule which has constant learning rate and momentum.","PeriodicalId":286352,"journal":{"name":"2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.00CH37077)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Short-term power load forecasting by neural network with stochastic back-propagation learning algorithm\",\"authors\":\"R. Hwang, Huang-Chu Huang, J. Hsieh\",\"doi\":\"10.1109/PESW.2000.847623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a short-term power load forecaster based on a neural network with stochastic back-propagation learning algorithm is developed. This modified learning rule can effectively help the load forecaster escape from a local minimum while it is trained. Consequently, the proposed load forecaster has more accurate prediction in forecasting operation. As a comparison, the same experiments are also performed by using a neural network with a traditional back-propagation learning rule which has constant learning rate and momentum.\",\"PeriodicalId\":286352,\"journal\":{\"name\":\"2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.00CH37077)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.00CH37077)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESW.2000.847623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.00CH37077)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESW.2000.847623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Short-term power load forecasting by neural network with stochastic back-propagation learning algorithm
In this paper, a short-term power load forecaster based on a neural network with stochastic back-propagation learning algorithm is developed. This modified learning rule can effectively help the load forecaster escape from a local minimum while it is trained. Consequently, the proposed load forecaster has more accurate prediction in forecasting operation. As a comparison, the same experiments are also performed by using a neural network with a traditional back-propagation learning rule which has constant learning rate and momentum.