Pedro E. O. Primo, Weslley L. Caldas, G. S. Almeida, L. P. L. Brasil, Carlos H. L. Cavalcante, J. P. Madeiro, Danielo G. Gomes, R. C. Pedrosa
{"title":"基于临床数据预测恰加斯病患者猝死的诊断辅助:一种基于机器学习的方法","authors":"Pedro E. O. Primo, Weslley L. Caldas, G. S. Almeida, L. P. L. Brasil, Carlos H. L. Cavalcante, J. P. Madeiro, Danielo G. Gomes, R. C. Pedrosa","doi":"10.5753/sbcas.2021.16077","DOIUrl":null,"url":null,"abstract":"A doença de Chagas (DC) afeta cerca de 7 milhões de pessoas no mundo e pode levar à Morte Súbita Cardíaca (MSC) do paciente por cardiomiopatia, cuja evolução pode ser controlada com diagnóstico precoce. Neste artigo, foram utilizados 7 algoritmos de aprendizagem de máquina com uma base de dados clínicos de pacientes chagásicos, objetivando a classificação em alta ou baixa predisposição do paciente à MSC, com seleção de atributos e balanceamento dos dados. Os melhores resultados indicam AUC:85.35 e F1:75.79 para o algoritmo K-Vizinhos Mais Próximos. Devido ao forte impacto nos modelos de aprendizagem de máquina, sugerimos o uso da Taquicardia Ventricular Não Sustentada e Extrassístole Ventricular Total como indicadores de MSC iminente.","PeriodicalId":413867,"journal":{"name":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auxílio ao Diagnóstico para Predição de Morte Súbita em Pacientes Chagásicos a Partir de Dados Clínicos: uma Abordagem baseada em Aprendizagem de Máquina\",\"authors\":\"Pedro E. O. Primo, Weslley L. Caldas, G. S. Almeida, L. P. L. Brasil, Carlos H. L. Cavalcante, J. P. Madeiro, Danielo G. Gomes, R. C. Pedrosa\",\"doi\":\"10.5753/sbcas.2021.16077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A doença de Chagas (DC) afeta cerca de 7 milhões de pessoas no mundo e pode levar à Morte Súbita Cardíaca (MSC) do paciente por cardiomiopatia, cuja evolução pode ser controlada com diagnóstico precoce. Neste artigo, foram utilizados 7 algoritmos de aprendizagem de máquina com uma base de dados clínicos de pacientes chagásicos, objetivando a classificação em alta ou baixa predisposição do paciente à MSC, com seleção de atributos e balanceamento dos dados. Os melhores resultados indicam AUC:85.35 e F1:75.79 para o algoritmo K-Vizinhos Mais Próximos. Devido ao forte impacto nos modelos de aprendizagem de máquina, sugerimos o uso da Taquicardia Ventricular Não Sustentada e Extrassístole Ventricular Total como indicadores de MSC iminente.\",\"PeriodicalId\":413867,\"journal\":{\"name\":\"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbcas.2021.16077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2021.16077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Auxílio ao Diagnóstico para Predição de Morte Súbita em Pacientes Chagásicos a Partir de Dados Clínicos: uma Abordagem baseada em Aprendizagem de Máquina
A doença de Chagas (DC) afeta cerca de 7 milhões de pessoas no mundo e pode levar à Morte Súbita Cardíaca (MSC) do paciente por cardiomiopatia, cuja evolução pode ser controlada com diagnóstico precoce. Neste artigo, foram utilizados 7 algoritmos de aprendizagem de máquina com uma base de dados clínicos de pacientes chagásicos, objetivando a classificação em alta ou baixa predisposição do paciente à MSC, com seleção de atributos e balanceamento dos dados. Os melhores resultados indicam AUC:85.35 e F1:75.79 para o algoritmo K-Vizinhos Mais Próximos. Devido ao forte impacto nos modelos de aprendizagem de máquina, sugerimos o uso da Taquicardia Ventricular Não Sustentada e Extrassístole Ventricular Total como indicadores de MSC iminente.