玻璃- ito系统作为电子发射器

J. Olesik, Z. Olesik, M. Malachowski
{"title":"玻璃- ito系统作为电子发射器","authors":"J. Olesik, Z. Olesik, M. Malachowski","doi":"10.1117/12.425447","DOIUrl":null,"url":null,"abstract":"The thin transparent and conductive Sn doped In2O3 layers have been deposited onto both surfaces of the glass plate of dimensions 0.2x16x16 mm using the constant-current ion sputtering method. In order to study the electron emission the voltage has been applied between both the ITO layers. One of the layers was 1 micrometers thick (the field electrode) and another one (10nm and much thinner) was deposited onto the opposite surface of the glass. This thin layer was treated as the electron emitter. The polarizing voltage Upol has been applied to the field electrode. The study has been carried out in vacuum (10MIN7hPa). The multichannel analyzer of amplitude of voltage pulses created by the electron multiplier has been used in order to record the electron emission yield. Aside of the field effects the studies concerning the result of UV illumination on the photo emission monitored by field has been examined. Determined were the amplitude spectrum of the voltage pulses for various polarizing voltage. The same method was used to find the dependence of the pulse frequency n on the applied voltage Upol. The exponential dependence n = f(Upol) has been found. The field induced emission mechanism can be explained on the basis of the well known phenomena occurring in semiconductors under influence of strong electric field (the hot electron effect, the impact ionization, the Gunn effect, the tunnel effect, etc.). It was also found that additional effect at simultaneous emission of two electrons as a result of absorption of a single photon have to be taken into account. The existence of this effect has been proved by decomposition of the amplitude spectrum into Gaussians. Measurements of electron energy in the field induced emission showed that about 80% of electrons have energy up to 10 eV. Photo induced optical second harmonic (SHG) has been also observed in these films.","PeriodicalId":365405,"journal":{"name":"International Conference on Solid State Crystals","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Glass-ITO system as electron emitter\",\"authors\":\"J. Olesik, Z. Olesik, M. Malachowski\",\"doi\":\"10.1117/12.425447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The thin transparent and conductive Sn doped In2O3 layers have been deposited onto both surfaces of the glass plate of dimensions 0.2x16x16 mm using the constant-current ion sputtering method. In order to study the electron emission the voltage has been applied between both the ITO layers. One of the layers was 1 micrometers thick (the field electrode) and another one (10nm and much thinner) was deposited onto the opposite surface of the glass. This thin layer was treated as the electron emitter. The polarizing voltage Upol has been applied to the field electrode. The study has been carried out in vacuum (10MIN7hPa). The multichannel analyzer of amplitude of voltage pulses created by the electron multiplier has been used in order to record the electron emission yield. Aside of the field effects the studies concerning the result of UV illumination on the photo emission monitored by field has been examined. Determined were the amplitude spectrum of the voltage pulses for various polarizing voltage. The same method was used to find the dependence of the pulse frequency n on the applied voltage Upol. The exponential dependence n = f(Upol) has been found. The field induced emission mechanism can be explained on the basis of the well known phenomena occurring in semiconductors under influence of strong electric field (the hot electron effect, the impact ionization, the Gunn effect, the tunnel effect, etc.). It was also found that additional effect at simultaneous emission of two electrons as a result of absorption of a single photon have to be taken into account. The existence of this effect has been proved by decomposition of the amplitude spectrum into Gaussians. Measurements of electron energy in the field induced emission showed that about 80% of electrons have energy up to 10 eV. Photo induced optical second harmonic (SHG) has been also observed in these films.\",\"PeriodicalId\":365405,\"journal\":{\"name\":\"International Conference on Solid State Crystals\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Solid State Crystals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.425447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Solid State Crystals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.425447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用恒流离子溅射的方法在0.2x16x16 mm尺寸的玻璃板表面沉积了透明且导电的锡掺杂In2O3薄层。为了研究电子发射,在两个ITO层之间施加了电压。其中一层厚度为1微米(电场电极),另一层(10nm且薄得多)沉积在玻璃的相反表面。这个薄层被当作电子发射器。将极化电压Upol应用于场电极。研究在真空(10MIN7hPa)中进行。为了记录电子发射产率,采用了电子倍增器产生的电压脉冲幅度多通道分析仪。除场效应外,还研究了紫外照射对场监测光发射结果的影响。测定了不同极化电压下电压脉冲的幅值谱。用同样的方法求出了脉冲频率n与外加电压Upol的关系。发现了n = f(Upol)的指数依赖性。场致发射机制可以根据半导体在强电场作用下发生的常见现象(热电子效应、冲击电离、冈恩效应、隧道效应等)来解释。同时还发现,由于单光子的吸收,两个电子同时发射时的附加效应也必须考虑在内。通过将振幅谱分解为高斯谱,证明了这种效应的存在。对场致发射中电子能量的测量表明,约80%的电子能量高达10 eV。在这些薄膜中还观察到光致二次谐波(SHG)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Glass-ITO system as electron emitter
The thin transparent and conductive Sn doped In2O3 layers have been deposited onto both surfaces of the glass plate of dimensions 0.2x16x16 mm using the constant-current ion sputtering method. In order to study the electron emission the voltage has been applied between both the ITO layers. One of the layers was 1 micrometers thick (the field electrode) and another one (10nm and much thinner) was deposited onto the opposite surface of the glass. This thin layer was treated as the electron emitter. The polarizing voltage Upol has been applied to the field electrode. The study has been carried out in vacuum (10MIN7hPa). The multichannel analyzer of amplitude of voltage pulses created by the electron multiplier has been used in order to record the electron emission yield. Aside of the field effects the studies concerning the result of UV illumination on the photo emission monitored by field has been examined. Determined were the amplitude spectrum of the voltage pulses for various polarizing voltage. The same method was used to find the dependence of the pulse frequency n on the applied voltage Upol. The exponential dependence n = f(Upol) has been found. The field induced emission mechanism can be explained on the basis of the well known phenomena occurring in semiconductors under influence of strong electric field (the hot electron effect, the impact ionization, the Gunn effect, the tunnel effect, etc.). It was also found that additional effect at simultaneous emission of two electrons as a result of absorption of a single photon have to be taken into account. The existence of this effect has been proved by decomposition of the amplitude spectrum into Gaussians. Measurements of electron energy in the field induced emission showed that about 80% of electrons have energy up to 10 eV. Photo induced optical second harmonic (SHG) has been also observed in these films.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信