基于双峰CSI数据的深度学习室内定位

Xuyu Wang, S. Mao
{"title":"基于双峰CSI数据的深度学习室内定位","authors":"Xuyu Wang, S. Mao","doi":"10.1049/PBTE081E_CH10","DOIUrl":null,"url":null,"abstract":"In this chapter, we incorporate deep learning for indoor localization utilizing channel state information (CSI) with commodity 5 GHz Wi-Fi. We first introduce the state-ofthe-art deep-learning techniques including deep autoencoder network, convolutional neural network (CNN), and recurrent neural network (RNN). We then present a deep-learning-based algorithm to leverage bimodal CSI data, i.e., average amplitudes and estimated angle of arrivals (AOA), for indoor fingerprinting. The proposed scheme is validated with extensive experiments. Finally, we discuss several open research problems for indoor localization based on deep-learning techniques.","PeriodicalId":358911,"journal":{"name":"Applications of Machine Learning in Wireless Communications","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep learning for indoor localization based on bimodal CSI data\",\"authors\":\"Xuyu Wang, S. Mao\",\"doi\":\"10.1049/PBTE081E_CH10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, we incorporate deep learning for indoor localization utilizing channel state information (CSI) with commodity 5 GHz Wi-Fi. We first introduce the state-ofthe-art deep-learning techniques including deep autoencoder network, convolutional neural network (CNN), and recurrent neural network (RNN). We then present a deep-learning-based algorithm to leverage bimodal CSI data, i.e., average amplitudes and estimated angle of arrivals (AOA), for indoor fingerprinting. The proposed scheme is validated with extensive experiments. Finally, we discuss several open research problems for indoor localization based on deep-learning techniques.\",\"PeriodicalId\":358911,\"journal\":{\"name\":\"Applications of Machine Learning in Wireless Communications\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications of Machine Learning in Wireless Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/PBTE081E_CH10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Machine Learning in Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/PBTE081E_CH10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本章中,我们将利用信道状态信息(CSI)与商品5 GHz Wi-Fi结合深度学习进行室内定位。我们首先介绍了最先进的深度学习技术,包括深度自编码器网络、卷积神经网络(CNN)和循环神经网络(RNN)。然后,我们提出了一种基于深度学习的算法来利用双峰CSI数据,即平均振幅和估计到达角(AOA),用于室内指纹识别。通过大量的实验验证了该方案的有效性。最后,讨论了基于深度学习技术的室内定位研究的几个开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning for indoor localization based on bimodal CSI data
In this chapter, we incorporate deep learning for indoor localization utilizing channel state information (CSI) with commodity 5 GHz Wi-Fi. We first introduce the state-ofthe-art deep-learning techniques including deep autoencoder network, convolutional neural network (CNN), and recurrent neural network (RNN). We then present a deep-learning-based algorithm to leverage bimodal CSI data, i.e., average amplitudes and estimated angle of arrivals (AOA), for indoor fingerprinting. The proposed scheme is validated with extensive experiments. Finally, we discuss several open research problems for indoor localization based on deep-learning techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信