Jiajun Shi, D. Nayak, M. Ichihashi, S. Banna, C. A. Moritz
{"title":"超高密度14nm晶体管级单片3D集成电路设计","authors":"Jiajun Shi, D. Nayak, M. Ichihashi, S. Banna, C. A. Moritz","doi":"10.1109/ISVLSI.2016.94","DOIUrl":null,"url":null,"abstract":"Conventional 2D CMOS faces severe challenges sub-22nm nodes. The monolithic 3D (M3D) IC technology enables ultra-high density vertical connections and provides a good path for technology node scaling. Transistor-level (TR-L) monolithic 3D IC is the most advanced and fine-grained M3D IC technology. In this paper, for the first time, the detailed design as well as benefits and challenges of a silicon validated 14nm Finfet process design kit (PDK) based TR-L M3D IC technology is explored. TR-L M3D standard cell layout is achieved based on 14nm Finfet design rules and feature sizes. A semi-customized RC extraction methodology is performed for accurate 3D cell RC extraction. After extensive simulation, TR-L M3D cell power, delay and area are evaluated and compared with equivalent 2D cells in the same technology node. System-level benchmarking with several circuits show up to 55% reduced footprint, 25% shorter wire length, and 18% lower power with TR-L M3D vs. 2D CMOS.","PeriodicalId":140647,"journal":{"name":"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"On the Design of Ultra-High Density 14nm Finfet Based Transistor-Level Monolithic 3D ICs\",\"authors\":\"Jiajun Shi, D. Nayak, M. Ichihashi, S. Banna, C. A. Moritz\",\"doi\":\"10.1109/ISVLSI.2016.94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional 2D CMOS faces severe challenges sub-22nm nodes. The monolithic 3D (M3D) IC technology enables ultra-high density vertical connections and provides a good path for technology node scaling. Transistor-level (TR-L) monolithic 3D IC is the most advanced and fine-grained M3D IC technology. In this paper, for the first time, the detailed design as well as benefits and challenges of a silicon validated 14nm Finfet process design kit (PDK) based TR-L M3D IC technology is explored. TR-L M3D standard cell layout is achieved based on 14nm Finfet design rules and feature sizes. A semi-customized RC extraction methodology is performed for accurate 3D cell RC extraction. After extensive simulation, TR-L M3D cell power, delay and area are evaluated and compared with equivalent 2D cells in the same technology node. System-level benchmarking with several circuits show up to 55% reduced footprint, 25% shorter wire length, and 18% lower power with TR-L M3D vs. 2D CMOS.\",\"PeriodicalId\":140647,\"journal\":{\"name\":\"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2016.94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2016.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Design of Ultra-High Density 14nm Finfet Based Transistor-Level Monolithic 3D ICs
Conventional 2D CMOS faces severe challenges sub-22nm nodes. The monolithic 3D (M3D) IC technology enables ultra-high density vertical connections and provides a good path for technology node scaling. Transistor-level (TR-L) monolithic 3D IC is the most advanced and fine-grained M3D IC technology. In this paper, for the first time, the detailed design as well as benefits and challenges of a silicon validated 14nm Finfet process design kit (PDK) based TR-L M3D IC technology is explored. TR-L M3D standard cell layout is achieved based on 14nm Finfet design rules and feature sizes. A semi-customized RC extraction methodology is performed for accurate 3D cell RC extraction. After extensive simulation, TR-L M3D cell power, delay and area are evaluated and compared with equivalent 2D cells in the same technology node. System-level benchmarking with several circuits show up to 55% reduced footprint, 25% shorter wire length, and 18% lower power with TR-L M3D vs. 2D CMOS.