{"title":"具有被动奖励的群体感知社会系统树型推荐的博弈论分析","authors":"Kundan Kandhway, Bhushan Kotnis","doi":"10.1109/COMSNETS.2016.7439947","DOIUrl":null,"url":null,"abstract":"Participatory crowd sensing social systems rely on the participation of large number of individuals. Since humans are strategic by nature, effective incentive mechanisms are needed to encourage participation. A popular mechanism to recruit individuals is through referrals and passive incentives such as geometric incentive mechanisms used by the winning team in the 2009 DARPA Network Challenge and in multi level marketing schemes. The effect of such recruitment schemes on the effort put in by recruited strategic individuals is not clear. This paper attempts to fill this gap. Given a referral tree and the direct and passive reward mechanism, we formulate a network game where agents compete for finishing crowd sensing tasks. We characterize the Nash equilibrium efforts put in by the agents and derive closed form expressions for the same. We discover free riding behavior among nodes who obtain large passive rewards. This work has implications on designing effective recruitment mechanisms for crowd sourced tasks. For example, usage of geometric incentive mechanisms to recruit large number of individuals may not result in proportionate effort because of free riding.","PeriodicalId":185861,"journal":{"name":"2016 8th International Conference on Communication Systems and Networks (COMSNETS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Game theoretic analysis of tree based referrals for crowd sensing social systems with passive rewards\",\"authors\":\"Kundan Kandhway, Bhushan Kotnis\",\"doi\":\"10.1109/COMSNETS.2016.7439947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Participatory crowd sensing social systems rely on the participation of large number of individuals. Since humans are strategic by nature, effective incentive mechanisms are needed to encourage participation. A popular mechanism to recruit individuals is through referrals and passive incentives such as geometric incentive mechanisms used by the winning team in the 2009 DARPA Network Challenge and in multi level marketing schemes. The effect of such recruitment schemes on the effort put in by recruited strategic individuals is not clear. This paper attempts to fill this gap. Given a referral tree and the direct and passive reward mechanism, we formulate a network game where agents compete for finishing crowd sensing tasks. We characterize the Nash equilibrium efforts put in by the agents and derive closed form expressions for the same. We discover free riding behavior among nodes who obtain large passive rewards. This work has implications on designing effective recruitment mechanisms for crowd sourced tasks. For example, usage of geometric incentive mechanisms to recruit large number of individuals may not result in proportionate effort because of free riding.\",\"PeriodicalId\":185861,\"journal\":{\"name\":\"2016 8th International Conference on Communication Systems and Networks (COMSNETS)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th International Conference on Communication Systems and Networks (COMSNETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMSNETS.2016.7439947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th International Conference on Communication Systems and Networks (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS.2016.7439947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Game theoretic analysis of tree based referrals for crowd sensing social systems with passive rewards
Participatory crowd sensing social systems rely on the participation of large number of individuals. Since humans are strategic by nature, effective incentive mechanisms are needed to encourage participation. A popular mechanism to recruit individuals is through referrals and passive incentives such as geometric incentive mechanisms used by the winning team in the 2009 DARPA Network Challenge and in multi level marketing schemes. The effect of such recruitment schemes on the effort put in by recruited strategic individuals is not clear. This paper attempts to fill this gap. Given a referral tree and the direct and passive reward mechanism, we formulate a network game where agents compete for finishing crowd sensing tasks. We characterize the Nash equilibrium efforts put in by the agents and derive closed form expressions for the same. We discover free riding behavior among nodes who obtain large passive rewards. This work has implications on designing effective recruitment mechanisms for crowd sourced tasks. For example, usage of geometric incentive mechanisms to recruit large number of individuals may not result in proportionate effort because of free riding.