基于两个离散时间分数阶算子的分数阶、变阶PID控制器的实现

D. Mozyrska, Piotr Oziablo, M. Wyrwas
{"title":"基于两个离散时间分数阶算子的分数阶、变阶PID控制器的实现","authors":"D. Mozyrska, Piotr Oziablo, M. Wyrwas","doi":"10.1109/ICCMA46720.2019.8988684","DOIUrl":null,"url":null,"abstract":"In the paper we discuss two kinds of fractional-, variable-order PID controllers, which are based on two different Grünwald-Letnikov fractional-order backward difference definitions. Additionally, the algorithms of finding Kp, Ki, Kd parameters and order values of controllers are described. The algorithms use Nelder-Mead method to find parameters by minimazing given error criteria. The results of unit step-response of both implementations are presented in a graphical form and evaluated using overshoot levels, rise time and two error criteria which are integral squared time weighted error (SSTE) and integral squared time-squared weighted error (SST2E).","PeriodicalId":377212,"journal":{"name":"2019 7th International Conference on Control, Mechatronics and Automation (ICCMA)","volume":"312 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fractional-, variable-order PID controller implementation based on two discrete-time fractional order operators\",\"authors\":\"D. Mozyrska, Piotr Oziablo, M. Wyrwas\",\"doi\":\"10.1109/ICCMA46720.2019.8988684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper we discuss two kinds of fractional-, variable-order PID controllers, which are based on two different Grünwald-Letnikov fractional-order backward difference definitions. Additionally, the algorithms of finding Kp, Ki, Kd parameters and order values of controllers are described. The algorithms use Nelder-Mead method to find parameters by minimazing given error criteria. The results of unit step-response of both implementations are presented in a graphical form and evaluated using overshoot levels, rise time and two error criteria which are integral squared time weighted error (SSTE) and integral squared time-squared weighted error (SST2E).\",\"PeriodicalId\":377212,\"journal\":{\"name\":\"2019 7th International Conference on Control, Mechatronics and Automation (ICCMA)\",\"volume\":\"312 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Conference on Control, Mechatronics and Automation (ICCMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCMA46720.2019.8988684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Control, Mechatronics and Automation (ICCMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMA46720.2019.8988684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了基于两种不同的格 nwald- letnikov分数阶后向差分定义的两种分数阶变阶PID控制器。此外,还描述了Kp、Ki、Kd参数和控制器阶值的求解算法。该算法采用Nelder-Mead方法,通过最小化给定的误差标准来寻找参数。两种实现的单位阶跃响应结果以图形形式呈现,并使用超调电平,上升时间和积分平方时间加权误差(SSTE)和积分平方时间平方加权误差(SST2E)两个误差标准进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional-, variable-order PID controller implementation based on two discrete-time fractional order operators
In the paper we discuss two kinds of fractional-, variable-order PID controllers, which are based on two different Grünwald-Letnikov fractional-order backward difference definitions. Additionally, the algorithms of finding Kp, Ki, Kd parameters and order values of controllers are described. The algorithms use Nelder-Mead method to find parameters by minimazing given error criteria. The results of unit step-response of both implementations are presented in a graphical form and evaluated using overshoot levels, rise time and two error criteria which are integral squared time weighted error (SSTE) and integral squared time-squared weighted error (SST2E).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信