基于模糊规则基分类器的卵巢癌蛋白质谱诊断

A. Assareh, L. Volkert
{"title":"基于模糊规则基分类器的卵巢癌蛋白质谱诊断","authors":"A. Assareh, L. Volkert","doi":"10.1109/CIBCB.2009.4925728","DOIUrl":null,"url":null,"abstract":"Fuzzy rule base classification systems have been the focus of increased attention in recent years, due to their unique capability of providing human experts with outcomes by means of linguistic rules. In the same time period classifier fusion approaches have been shown to enhance the performance of pattern recognition systems. In the present study we applied a hybrid random subspace fusion scheme that constructs a set of different fuzzy classifiers utilizing different subsets of both the feature space and the sample domain, combining the results of these classifiers using appropriate decision functions. Experimental results using two protein mass spectra datasets of ovarian cancer demonstrate the usefulness of this approach in comparison to other classifier fusion approaches.","PeriodicalId":162052,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Fuzzy rule base classifier fusion for protein mass spectra based ovarian cancer diagnosis\",\"authors\":\"A. Assareh, L. Volkert\",\"doi\":\"10.1109/CIBCB.2009.4925728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy rule base classification systems have been the focus of increased attention in recent years, due to their unique capability of providing human experts with outcomes by means of linguistic rules. In the same time period classifier fusion approaches have been shown to enhance the performance of pattern recognition systems. In the present study we applied a hybrid random subspace fusion scheme that constructs a set of different fuzzy classifiers utilizing different subsets of both the feature space and the sample domain, combining the results of these classifiers using appropriate decision functions. Experimental results using two protein mass spectra datasets of ovarian cancer demonstrate the usefulness of this approach in comparison to other classifier fusion approaches.\",\"PeriodicalId\":162052,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2009.4925728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2009.4925728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

近年来,模糊规则基分类系统由于其独特的能力,可以通过语言规则为人类专家提供结果,而受到越来越多的关注。与此同时,分类器融合方法已被证明可以提高模式识别系统的性能。在本研究中,我们采用了一种混合随机子空间融合方案,该方案利用特征空间和样本域的不同子集构建了一组不同的模糊分类器,并使用适当的决策函数将这些分类器的结果结合起来。使用两个卵巢癌蛋白质谱数据集的实验结果表明,与其他分类器融合方法相比,该方法是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy rule base classifier fusion for protein mass spectra based ovarian cancer diagnosis
Fuzzy rule base classification systems have been the focus of increased attention in recent years, due to their unique capability of providing human experts with outcomes by means of linguistic rules. In the same time period classifier fusion approaches have been shown to enhance the performance of pattern recognition systems. In the present study we applied a hybrid random subspace fusion scheme that constructs a set of different fuzzy classifiers utilizing different subsets of both the feature space and the sample domain, combining the results of these classifiers using appropriate decision functions. Experimental results using two protein mass spectra datasets of ovarian cancer demonstrate the usefulness of this approach in comparison to other classifier fusion approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信