基于灰色预测模型的水电机组性能退化预测

X. An, Yongjun Tang
{"title":"基于灰色预测模型的水电机组性能退化预测","authors":"X. An, Yongjun Tang","doi":"10.1109/ICICIP.2014.7010289","DOIUrl":null,"url":null,"abstract":"A performance degradation model of hydropower unit is proposed based on three-dimensional surface. In the model, the influence of active power and working head of hydropower unit is analyzed. The grey prediction model (GM (1, 1) model) is used to predict the performance degradation trend of hydropower unit. Real data of condition monitoring are utilized to verify the proposed method. Results show that the presented method can effectively predict the change trend of hydropower unit performance degradation time series.","PeriodicalId":408041,"journal":{"name":"Fifth International Conference on Intelligent Control and Information Processing","volume":"10 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance degradation prediction of hydropower unit based on grey prediction model\",\"authors\":\"X. An, Yongjun Tang\",\"doi\":\"10.1109/ICICIP.2014.7010289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A performance degradation model of hydropower unit is proposed based on three-dimensional surface. In the model, the influence of active power and working head of hydropower unit is analyzed. The grey prediction model (GM (1, 1) model) is used to predict the performance degradation trend of hydropower unit. Real data of condition monitoring are utilized to verify the proposed method. Results show that the presented method can effectively predict the change trend of hydropower unit performance degradation time series.\",\"PeriodicalId\":408041,\"journal\":{\"name\":\"Fifth International Conference on Intelligent Control and Information Processing\",\"volume\":\"10 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on Intelligent Control and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2014.7010289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2014.7010289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于三维曲面的水力发电机组性能退化模型。在模型中,分析了水电机组有功功率和工作扬程的影响。采用灰色预测模型(GM(1,1)模型)对水电机组性能退化趋势进行预测。利用状态监测的实际数据验证了该方法的有效性。结果表明,该方法能有效预测水电机组性能退化时间序列的变化趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance degradation prediction of hydropower unit based on grey prediction model
A performance degradation model of hydropower unit is proposed based on three-dimensional surface. In the model, the influence of active power and working head of hydropower unit is analyzed. The grey prediction model (GM (1, 1) model) is used to predict the performance degradation trend of hydropower unit. Real data of condition monitoring are utilized to verify the proposed method. Results show that the presented method can effectively predict the change trend of hydropower unit performance degradation time series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信