具有给定平均延迟的因果信号的峰值

J. Makhoul, A. Steinhardt
{"title":"具有给定平均延迟的因果信号的峰值","authors":"J. Makhoul, A. Steinhardt","doi":"10.1109/SPECT.1990.205584","DOIUrl":null,"url":null,"abstract":"Derives two results concerning the peak of a causal signal with a given average delay. The first result is that, for an average delay of tau , the maximum possible location of the signal peak is of the order of tau ( tau +3)/2. (This bound can also be interpreted as providing the maximum integer at which the most probable value of a discrete nonnegative random variable could occur, given that the random variable has a known mean.) The second result is that the signals that minimize the peak amplitude, subject to unit energy and average delay tau , have a peak value of the order of 1/ square root 2 tau +1. The authors construct causal signals for which the derived bounds are attained for any given real-valued delay. They also compare the derived bounds to the corresponding ones for all-pass signals.<<ETX>>","PeriodicalId":117661,"journal":{"name":"Fifth ASSP Workshop on Spectrum Estimation and Modeling","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The peak of a causal signal with a given average delay\",\"authors\":\"J. Makhoul, A. Steinhardt\",\"doi\":\"10.1109/SPECT.1990.205584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Derives two results concerning the peak of a causal signal with a given average delay. The first result is that, for an average delay of tau , the maximum possible location of the signal peak is of the order of tau ( tau +3)/2. (This bound can also be interpreted as providing the maximum integer at which the most probable value of a discrete nonnegative random variable could occur, given that the random variable has a known mean.) The second result is that the signals that minimize the peak amplitude, subject to unit energy and average delay tau , have a peak value of the order of 1/ square root 2 tau +1. The authors construct causal signals for which the derived bounds are attained for any given real-valued delay. They also compare the derived bounds to the corresponding ones for all-pass signals.<<ETX>>\",\"PeriodicalId\":117661,\"journal\":{\"name\":\"Fifth ASSP Workshop on Spectrum Estimation and Modeling\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth ASSP Workshop on Spectrum Estimation and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPECT.1990.205584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth ASSP Workshop on Spectrum Estimation and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPECT.1990.205584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

推导出两个关于给定平均延迟的因果信号峰值的结果。第一个结果是,对于tau的平均延迟,信号峰值的最大可能位置为tau (tau +3)/2的数量级。(这个界限也可以解释为提供一个离散非负随机变量可能出现的最可能值的最大整数,假设该随机变量有一个已知的平均值。)第二个结果是,受单位能量和平均延迟tau影响,峰值幅度最小的信号的峰值为1/√2 tau +1的数量级。对于任意给定的实值延迟,作者构造了可得到导出界的因果信号。他们还将导出的边界与全通信号的相应边界进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The peak of a causal signal with a given average delay
Derives two results concerning the peak of a causal signal with a given average delay. The first result is that, for an average delay of tau , the maximum possible location of the signal peak is of the order of tau ( tau +3)/2. (This bound can also be interpreted as providing the maximum integer at which the most probable value of a discrete nonnegative random variable could occur, given that the random variable has a known mean.) The second result is that the signals that minimize the peak amplitude, subject to unit energy and average delay tau , have a peak value of the order of 1/ square root 2 tau +1. The authors construct causal signals for which the derived bounds are attained for any given real-valued delay. They also compare the derived bounds to the corresponding ones for all-pass signals.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信