{"title":"通过种子重叠测试应用时间和体积压缩","authors":"Wenjing Rao, I. Bayraktaroglu, A. Orailoglu","doi":"10.1145/775832.776020","DOIUrl":null,"url":null,"abstract":"We propose in this paper an extension on the Scan Chain Concealment technique to further reduce test time and volume requirement. The proposed methodology stems from the architecture of the existing SCC scheme, while it attempts to overlap consecutive test vector seeds, thus providing increased flexibility in exploiting effectively the large volume of don't-care bits in test vectors. We also introduce modified ATPG algorithms upon the previous SCC scheme and explore various implementation strategies. Experimental data exhibit significant reductions on test time and volume over all current test compression techniques.","PeriodicalId":167477,"journal":{"name":"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Test application time and volume compression through seed overlapping\",\"authors\":\"Wenjing Rao, I. Bayraktaroglu, A. Orailoglu\",\"doi\":\"10.1145/775832.776020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose in this paper an extension on the Scan Chain Concealment technique to further reduce test time and volume requirement. The proposed methodology stems from the architecture of the existing SCC scheme, while it attempts to overlap consecutive test vector seeds, thus providing increased flexibility in exploiting effectively the large volume of don't-care bits in test vectors. We also introduce modified ATPG algorithms upon the previous SCC scheme and explore various implementation strategies. Experimental data exhibit significant reductions on test time and volume over all current test compression techniques.\",\"PeriodicalId\":167477,\"journal\":{\"name\":\"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/775832.776020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/775832.776020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Test application time and volume compression through seed overlapping
We propose in this paper an extension on the Scan Chain Concealment technique to further reduce test time and volume requirement. The proposed methodology stems from the architecture of the existing SCC scheme, while it attempts to overlap consecutive test vector seeds, thus providing increased flexibility in exploiting effectively the large volume of don't-care bits in test vectors. We also introduce modified ATPG algorithms upon the previous SCC scheme and explore various implementation strategies. Experimental data exhibit significant reductions on test time and volume over all current test compression techniques.