自主机器人无序点云的语义场景分割

Ya Wang, A. Zell
{"title":"自主机器人无序点云的语义场景分割","authors":"Ya Wang, A. Zell","doi":"10.1109/ECMR.2019.8870932","DOIUrl":null,"url":null,"abstract":"This paper describes a 3D semantic scene segmentation with convolutional neural networks for unordered point clouds of autonomous robots. Euclidean coordinates and RGB color spaces are used as well as multi-scaling layers. An outlier removal is designed to optimize the classification rate. We tested our system on real scenes using an RGB-D camera installed on a mobile robot. Additionally, we did comparison experiments on three different scene benchmarks. Compared to state-of-the-art point cloud semantic scene segmentation networks, our network produces better quality of segmentation results and achieves higher training and testing accuracies, as well as average intersection over union (IoU) and overall accuracy.","PeriodicalId":435630,"journal":{"name":"2019 European Conference on Mobile Robots (ECMR)","volume":"195 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Semantic Scene Segmentation of Unordered Point Clouds on Autonomous Robots\",\"authors\":\"Ya Wang, A. Zell\",\"doi\":\"10.1109/ECMR.2019.8870932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a 3D semantic scene segmentation with convolutional neural networks for unordered point clouds of autonomous robots. Euclidean coordinates and RGB color spaces are used as well as multi-scaling layers. An outlier removal is designed to optimize the classification rate. We tested our system on real scenes using an RGB-D camera installed on a mobile robot. Additionally, we did comparison experiments on three different scene benchmarks. Compared to state-of-the-art point cloud semantic scene segmentation networks, our network produces better quality of segmentation results and achieves higher training and testing accuracies, as well as average intersection over union (IoU) and overall accuracy.\",\"PeriodicalId\":435630,\"journal\":{\"name\":\"2019 European Conference on Mobile Robots (ECMR)\",\"volume\":\"195 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 European Conference on Mobile Robots (ECMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECMR.2019.8870932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2019.8870932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于卷积神经网络的自主机器人无序点云三维语义场景分割方法。欧几里得坐标和RGB色彩空间以及多尺度层被使用。设计了一个异常值去除来优化分类率。我们使用安装在移动机器人上的RGB-D相机在真实场景中测试了我们的系统。此外,我们在三个不同的场景基准上做了比较实验。与最先进的点云语义场景分割网络相比,我们的网络产生了更好的分割结果质量,实现了更高的训练和测试精度,以及平均交联(IoU)和整体精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Scene Segmentation of Unordered Point Clouds on Autonomous Robots
This paper describes a 3D semantic scene segmentation with convolutional neural networks for unordered point clouds of autonomous robots. Euclidean coordinates and RGB color spaces are used as well as multi-scaling layers. An outlier removal is designed to optimize the classification rate. We tested our system on real scenes using an RGB-D camera installed on a mobile robot. Additionally, we did comparison experiments on three different scene benchmarks. Compared to state-of-the-art point cloud semantic scene segmentation networks, our network produces better quality of segmentation results and achieves higher training and testing accuracies, as well as average intersection over union (IoU) and overall accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信