容延迟分布稀疏三角解的一种新的数据映射方案

K. Teranishi, P. Raghavan, E. Ng
{"title":"容延迟分布稀疏三角解的一种新的数据映射方案","authors":"K. Teranishi, P. Raghavan, E. Ng","doi":"10.1109/SC.2002.10020","DOIUrl":null,"url":null,"abstract":"This paper concerns latency-tolerant schemes for the efficient parallel solution of sparse triangular linear systems on distributed memory multiprocessors. Such triangular solution is required when sparse Cholesky factors are used to solve for a sequence of right-hand-side vectors or when incomplete sparse Cholesky factors are used to precondition a Conjugate Gradients iterative solver. In such applications, the use of traditional distributed substitution schemes can create a performance bottleneck when the latency of interprocessor communication is large. We had earlier developed the Selective Inversion (SI) scheme to reduce communication latency costs by replacing distributed substitution by parallel matrix vector multiplication. We now present a new two-way mapping of the triangular sparse matrix to processors to improve the performance of SI by halving its communication latency costs. We provide analytic results for model sparse matrices and we report on the performance of our scheme for parallel preconditioning with incomplete sparse Cholesky factors.","PeriodicalId":302800,"journal":{"name":"ACM/IEEE SC 2002 Conference (SC'02)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A New Data-Mapping Scheme for Latency-Tolerant Distributed Sparse Triangular Solution\",\"authors\":\"K. Teranishi, P. Raghavan, E. Ng\",\"doi\":\"10.1109/SC.2002.10020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns latency-tolerant schemes for the efficient parallel solution of sparse triangular linear systems on distributed memory multiprocessors. Such triangular solution is required when sparse Cholesky factors are used to solve for a sequence of right-hand-side vectors or when incomplete sparse Cholesky factors are used to precondition a Conjugate Gradients iterative solver. In such applications, the use of traditional distributed substitution schemes can create a performance bottleneck when the latency of interprocessor communication is large. We had earlier developed the Selective Inversion (SI) scheme to reduce communication latency costs by replacing distributed substitution by parallel matrix vector multiplication. We now present a new two-way mapping of the triangular sparse matrix to processors to improve the performance of SI by halving its communication latency costs. We provide analytic results for model sparse matrices and we report on the performance of our scheme for parallel preconditioning with incomplete sparse Cholesky factors.\",\"PeriodicalId\":302800,\"journal\":{\"name\":\"ACM/IEEE SC 2002 Conference (SC'02)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE SC 2002 Conference (SC'02)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.2002.10020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2002 Conference (SC'02)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2002.10020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文研究了分布式存储多处理机上稀疏三角形线性系统高效并行解的容延迟方案。当使用稀疏Cholesky因子求解右侧向量序列或使用不完全稀疏Cholesky因子作为共轭梯度迭代求解器的先决条件时,需要这样的三角形解。在这样的应用程序中,当处理器间通信的延迟很大时,使用传统的分布式替代方案可能会造成性能瓶颈。我们之前已经开发了选择性反演(SI)方案,通过并行矩阵向量乘法取代分布式替换来降低通信延迟成本。我们现在提出了一种新的三角稀疏矩阵到处理器的双向映射,通过将其通信延迟成本减半来提高SI的性能。我们给出了模型稀疏矩阵的解析结果,并报告了我们的方案在具有不完全稀疏Cholesky因子的并行预处理中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Data-Mapping Scheme for Latency-Tolerant Distributed Sparse Triangular Solution
This paper concerns latency-tolerant schemes for the efficient parallel solution of sparse triangular linear systems on distributed memory multiprocessors. Such triangular solution is required when sparse Cholesky factors are used to solve for a sequence of right-hand-side vectors or when incomplete sparse Cholesky factors are used to precondition a Conjugate Gradients iterative solver. In such applications, the use of traditional distributed substitution schemes can create a performance bottleneck when the latency of interprocessor communication is large. We had earlier developed the Selective Inversion (SI) scheme to reduce communication latency costs by replacing distributed substitution by parallel matrix vector multiplication. We now present a new two-way mapping of the triangular sparse matrix to processors to improve the performance of SI by halving its communication latency costs. We provide analytic results for model sparse matrices and we report on the performance of our scheme for parallel preconditioning with incomplete sparse Cholesky factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信