半参数选择模型无穷远处不相容约束的检验

Bruno Crépon
{"title":"半参数选择模型无穷远处不相容约束的检验","authors":"Bruno Crépon","doi":"10.2139/ssrn.892834","DOIUrl":null,"url":null,"abstract":"The control function in the semiparametric selection model is zero at infinity. This paper proposes additional restrictions of the same type and shows how to use them to test assumed exclusion restrictions necessary for root N estimation of the model. The test is based on the estimated control function and its derivative and takes the form of a GMM step that occurs at infinity. Alternative estimation of the parameters are proposed which do not rely on exclusion restrictions, extending available results for the estimation of the intercept at infinity. Simulations are implemented.","PeriodicalId":261871,"journal":{"name":"IZA: General Labor Economics (Topic)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Testing Exclusion Restrictions at Infinity in the Semiparametric Selection Model\",\"authors\":\"Bruno Crépon\",\"doi\":\"10.2139/ssrn.892834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The control function in the semiparametric selection model is zero at infinity. This paper proposes additional restrictions of the same type and shows how to use them to test assumed exclusion restrictions necessary for root N estimation of the model. The test is based on the estimated control function and its derivative and takes the form of a GMM step that occurs at infinity. Alternative estimation of the parameters are proposed which do not rely on exclusion restrictions, extending available results for the estimation of the intercept at infinity. Simulations are implemented.\",\"PeriodicalId\":261871,\"journal\":{\"name\":\"IZA: General Labor Economics (Topic)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IZA: General Labor Economics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.892834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IZA: General Labor Economics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.892834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

半参数选择模型中的控制函数在无穷远处为零。本文提出了同类型的附加限制,并展示了如何使用它们来检验模型的根N估计所必需的假定排除限制。该测试基于估计的控制函数及其导数,并采用在无穷远处发生的GMM步长的形式。提出了一种不依赖于排除限制的参数替代估计方法,扩展了已有的无穷远处截距估计结果。仿真实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing Exclusion Restrictions at Infinity in the Semiparametric Selection Model
The control function in the semiparametric selection model is zero at infinity. This paper proposes additional restrictions of the same type and shows how to use them to test assumed exclusion restrictions necessary for root N estimation of the model. The test is based on the estimated control function and its derivative and takes the form of a GMM step that occurs at infinity. Alternative estimation of the parameters are proposed which do not rely on exclusion restrictions, extending available results for the estimation of the intercept at infinity. Simulations are implemented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信