{"title":"机器人操纵臂的实时轨迹缩放","authors":"M. Faroni, R. Pagani, G. Legnani","doi":"10.1109/UR49135.2020.9144889","DOIUrl":null,"url":null,"abstract":"Recent developments in industrial robotics use real-time trajectory modification to improve throughput and safety in automatic processes. Online trajectory scaling is often used to this purpose. In this paper, we propose a feedback trajectory scaling approach that is able to recover from the delay introduced by the speed modulation and improves the path-following performance thanks to an additional inner control loop. Simulation and experimental results on an industrial 6-degree-of-freedom robot show the effectiveness of the proposed approach compared to standard algorithms.","PeriodicalId":360208,"journal":{"name":"2020 17th International Conference on Ubiquitous Robots (UR)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Real-time trajectory scaling for robot manipulators\",\"authors\":\"M. Faroni, R. Pagani, G. Legnani\",\"doi\":\"10.1109/UR49135.2020.9144889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent developments in industrial robotics use real-time trajectory modification to improve throughput and safety in automatic processes. Online trajectory scaling is often used to this purpose. In this paper, we propose a feedback trajectory scaling approach that is able to recover from the delay introduced by the speed modulation and improves the path-following performance thanks to an additional inner control loop. Simulation and experimental results on an industrial 6-degree-of-freedom robot show the effectiveness of the proposed approach compared to standard algorithms.\",\"PeriodicalId\":360208,\"journal\":{\"name\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UR49135.2020.9144889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UR49135.2020.9144889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time trajectory scaling for robot manipulators
Recent developments in industrial robotics use real-time trajectory modification to improve throughput and safety in automatic processes. Online trajectory scaling is often used to this purpose. In this paper, we propose a feedback trajectory scaling approach that is able to recover from the delay introduced by the speed modulation and improves the path-following performance thanks to an additional inner control loop. Simulation and experimental results on an industrial 6-degree-of-freedom robot show the effectiveness of the proposed approach compared to standard algorithms.