基于智能手机应用的生物识别耳朵和视网膜认证统一分类器

Abhinand Poosarala, R. Jayashree
{"title":"基于智能手机应用的生物识别耳朵和视网膜认证统一分类器","authors":"Abhinand Poosarala, R. Jayashree","doi":"10.1145/3271553.3271618","DOIUrl":null,"url":null,"abstract":"As biometric systems provide more reliable, efficient and secure means of identity verification, it gains its place as a most important system. Implementing ear biometrics using smartphone application development will justify the best suitable measure for authentication. The retina images are robust non-intrusive functional biometric. This paper proposes an authentication system which uses uniform feature extraction, Histogram of Gradient (HoG) and uniform classifier, Support Vector Machine (SVM) for two physiological biometrics. The best fitting kernel for SVM classification is achieved for radial basis function. The accuracy with uniform classier is 94% for ear biometrics and 93% considering retina images.","PeriodicalId":414782,"journal":{"name":"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Uniform Classifier for Biometric Ear and Retina Authentication Using Smartphone Application\",\"authors\":\"Abhinand Poosarala, R. Jayashree\",\"doi\":\"10.1145/3271553.3271618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As biometric systems provide more reliable, efficient and secure means of identity verification, it gains its place as a most important system. Implementing ear biometrics using smartphone application development will justify the best suitable measure for authentication. The retina images are robust non-intrusive functional biometric. This paper proposes an authentication system which uses uniform feature extraction, Histogram of Gradient (HoG) and uniform classifier, Support Vector Machine (SVM) for two physiological biometrics. The best fitting kernel for SVM classification is achieved for radial basis function. The accuracy with uniform classier is 94% for ear biometrics and 93% considering retina images.\",\"PeriodicalId\":414782,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3271553.3271618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Vision, Image and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3271553.3271618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于生物识别系统提供了更加可靠、高效和安全的身份验证手段,它已成为最重要的系统。使用智能手机应用程序开发实现耳朵生物识别将证明最适合的身份验证措施。视网膜图像是鲁棒的非侵入性功能生物识别。本文提出了一种基于均匀特征提取、梯度直方图(HoG)和均匀分类器、支持向量机(SVM)的两种生理生物特征认证系统。对径向基函数给出了SVM分类的最佳拟合核。均匀分类器对耳生物识别的准确率为94%,对视网膜图像的准确率为93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform Classifier for Biometric Ear and Retina Authentication Using Smartphone Application
As biometric systems provide more reliable, efficient and secure means of identity verification, it gains its place as a most important system. Implementing ear biometrics using smartphone application development will justify the best suitable measure for authentication. The retina images are robust non-intrusive functional biometric. This paper proposes an authentication system which uses uniform feature extraction, Histogram of Gradient (HoG) and uniform classifier, Support Vector Machine (SVM) for two physiological biometrics. The best fitting kernel for SVM classification is achieved for radial basis function. The accuracy with uniform classier is 94% for ear biometrics and 93% considering retina images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信