{"title":"时序机器的单状态转换故障模型","authors":"K. Cheng, Jing-Yang Jou","doi":"10.1109/ICCAD.1990.129887","DOIUrl":null,"url":null,"abstract":"A fault model in the state transition level of finite state machines is studied. In this model, called a single-state-transition (SST) fault model, a fault causes a state transition to go to a wrong destination state while leaving its input/output label intact. An analysis is given to show that a test set that detects all SST faults will also detect most multiple-state-transition (MST) faults in practical finite state machines. It is shown that, for an N-state M-transaction machine, the length of the SST fault test set is upper-bounded by 2*M*N/sup 2/ while the length is exponential in terms of N for a checking experiment. Experimental results show that the test set generated for SST faults achieves not only a high single stuck-at fault coverage but also a high transistor fault coverage for a multilevel implementation of the machine.<<ETX>>","PeriodicalId":242666,"journal":{"name":"1990 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"A single-state-transition fault model for sequential machines\",\"authors\":\"K. Cheng, Jing-Yang Jou\",\"doi\":\"10.1109/ICCAD.1990.129887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fault model in the state transition level of finite state machines is studied. In this model, called a single-state-transition (SST) fault model, a fault causes a state transition to go to a wrong destination state while leaving its input/output label intact. An analysis is given to show that a test set that detects all SST faults will also detect most multiple-state-transition (MST) faults in practical finite state machines. It is shown that, for an N-state M-transaction machine, the length of the SST fault test set is upper-bounded by 2*M*N/sup 2/ while the length is exponential in terms of N for a checking experiment. Experimental results show that the test set generated for SST faults achieves not only a high single stuck-at fault coverage but also a high transistor fault coverage for a multilevel implementation of the machine.<<ETX>>\",\"PeriodicalId\":242666,\"journal\":{\"name\":\"1990 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1990 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.1990.129887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1990 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1990.129887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A single-state-transition fault model for sequential machines
A fault model in the state transition level of finite state machines is studied. In this model, called a single-state-transition (SST) fault model, a fault causes a state transition to go to a wrong destination state while leaving its input/output label intact. An analysis is given to show that a test set that detects all SST faults will also detect most multiple-state-transition (MST) faults in practical finite state machines. It is shown that, for an N-state M-transaction machine, the length of the SST fault test set is upper-bounded by 2*M*N/sup 2/ while the length is exponential in terms of N for a checking experiment. Experimental results show that the test set generated for SST faults achieves not only a high single stuck-at fault coverage but also a high transistor fault coverage for a multilevel implementation of the machine.<>