铝碳化硅金属基复合材料的制备与摩擦钻削

G. Somasundaram, S R Boopathy
{"title":"铝碳化硅金属基复合材料的制备与摩擦钻削","authors":"G. Somasundaram, S R Boopathy","doi":"10.1109/FAME.2010.5714793","DOIUrl":null,"url":null,"abstract":"This study investigates the friction drilling process, a nontraditional hole-making technique, for thermal aspects, energy and power in friction drilling of aluminum silicon carbide metal matrix composites (AlSiC MMC). This type of MMC is finding applications in making automotive pats like Engine, brake system and drive shaft. In friction drilling, a rotating conical tool is applied to penetrate work-material and create a hole in single step. The main concern in the present study is the effectiveness and advantages of this novel technique on dry friction drilled holes. The parameters considered are the composition of work piece, temperature of work piece, work piece thickness, spindle speed, and feed rate. The interaction effect of these parameters was analyzed using design of experiments applied response surface methodology. The AlSiC MMC plates were fabricated by liquid metallurgy method which is an economical and efficient one. A low volume low cost fabrication technique is adopted. Friction drilling process is compared with the conventional twist drilling process.","PeriodicalId":123922,"journal":{"name":"Frontiers in Automobile and Mechanical Engineering -2010","volume":"82 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Fabrication and friction drilling of aluminum silicon carbide metal matrix composite\",\"authors\":\"G. Somasundaram, S R Boopathy\",\"doi\":\"10.1109/FAME.2010.5714793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the friction drilling process, a nontraditional hole-making technique, for thermal aspects, energy and power in friction drilling of aluminum silicon carbide metal matrix composites (AlSiC MMC). This type of MMC is finding applications in making automotive pats like Engine, brake system and drive shaft. In friction drilling, a rotating conical tool is applied to penetrate work-material and create a hole in single step. The main concern in the present study is the effectiveness and advantages of this novel technique on dry friction drilled holes. The parameters considered are the composition of work piece, temperature of work piece, work piece thickness, spindle speed, and feed rate. The interaction effect of these parameters was analyzed using design of experiments applied response surface methodology. The AlSiC MMC plates were fabricated by liquid metallurgy method which is an economical and efficient one. A low volume low cost fabrication technique is adopted. Friction drilling process is compared with the conventional twist drilling process.\",\"PeriodicalId\":123922,\"journal\":{\"name\":\"Frontiers in Automobile and Mechanical Engineering -2010\",\"volume\":\"82 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Automobile and Mechanical Engineering -2010\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FAME.2010.5714793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Automobile and Mechanical Engineering -2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FAME.2010.5714793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文研究了一种非传统的制孔工艺——摩擦钻孔工艺在铝碳化硅金属基复合材料(AlSiC MMC)摩擦钻孔中的热能、能量和功率。这种类型的MMC正在寻找在制造汽车零部件,如发动机,制动系统和传动轴的应用。在摩擦钻井中,使用旋转的锥形工具一次钻透工作材料并形成一个孔。本研究主要关注的是这种新技术在干摩擦钻孔上的有效性和优越性。考虑的参数是工件的组成、工件的温度、工件的厚度、主轴转速和进给速度。采用响应面法设计试验,分析了各参数的交互效应。采用经济、高效的液相冶金法制备了AlSiC MMC板。采用了小体积、低成本的制造工艺。将摩擦钻削工艺与传统麻花钻削工艺进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication and friction drilling of aluminum silicon carbide metal matrix composite
This study investigates the friction drilling process, a nontraditional hole-making technique, for thermal aspects, energy and power in friction drilling of aluminum silicon carbide metal matrix composites (AlSiC MMC). This type of MMC is finding applications in making automotive pats like Engine, brake system and drive shaft. In friction drilling, a rotating conical tool is applied to penetrate work-material and create a hole in single step. The main concern in the present study is the effectiveness and advantages of this novel technique on dry friction drilled holes. The parameters considered are the composition of work piece, temperature of work piece, work piece thickness, spindle speed, and feed rate. The interaction effect of these parameters was analyzed using design of experiments applied response surface methodology. The AlSiC MMC plates were fabricated by liquid metallurgy method which is an economical and efficient one. A low volume low cost fabrication technique is adopted. Friction drilling process is compared with the conventional twist drilling process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信