一种用于多级图像阈值分割的扩展直方图方法

M. Quweider
{"title":"一种用于多级图像阈值分割的扩展直方图方法","authors":"M. Quweider","doi":"10.1109/CONIELECOMP.2010.5440784","DOIUrl":null,"url":null,"abstract":"In this paper a new image thresholding technique is proposed based on expanding the histogram of the image to accommodate spatial-related information in the form of a variance map of every gray level present in the image. The expanded histogram along with the variance levels are fed into a thresholding finding algorithm based on partitioning the interval (histogram) in an optimal way using dynamic programming with an entropy-based cost function. Compared with many existing methods, simulations on a range of images show good results. The effectiveness of the algorithm is shown even in the presence of low to moderate additive Gaussian noise levels.","PeriodicalId":236039,"journal":{"name":"2010 20th International Conference on Electronics Communications and Computers (CONIELECOMP)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An expanded histogram approach for multilevel image thresholding\",\"authors\":\"M. Quweider\",\"doi\":\"10.1109/CONIELECOMP.2010.5440784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a new image thresholding technique is proposed based on expanding the histogram of the image to accommodate spatial-related information in the form of a variance map of every gray level present in the image. The expanded histogram along with the variance levels are fed into a thresholding finding algorithm based on partitioning the interval (histogram) in an optimal way using dynamic programming with an entropy-based cost function. Compared with many existing methods, simulations on a range of images show good results. The effectiveness of the algorithm is shown even in the presence of low to moderate additive Gaussian noise levels.\",\"PeriodicalId\":236039,\"journal\":{\"name\":\"2010 20th International Conference on Electronics Communications and Computers (CONIELECOMP)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Electronics Communications and Computers (CONIELECOMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONIELECOMP.2010.5440784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Electronics Communications and Computers (CONIELECOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIELECOMP.2010.5440784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的图像阈值分割技术,该技术通过扩展图像的直方图来容纳图像中每个灰度级的方差图形式的空间相关信息。将扩展后的直方图与方差水平一起输入阈值查找算法,该算法使用基于熵的代价函数的动态规划以最优方式划分间隔(直方图)。与现有的许多方法相比,在一系列图像上的仿真显示了良好的效果。即使在存在低到中等加性高斯噪声水平的情况下,该算法的有效性也得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An expanded histogram approach for multilevel image thresholding
In this paper a new image thresholding technique is proposed based on expanding the histogram of the image to accommodate spatial-related information in the form of a variance map of every gray level present in the image. The expanded histogram along with the variance levels are fed into a thresholding finding algorithm based on partitioning the interval (histogram) in an optimal way using dynamic programming with an entropy-based cost function. Compared with many existing methods, simulations on a range of images show good results. The effectiveness of the algorithm is shown even in the presence of low to moderate additive Gaussian noise levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信