基于变分自编码器的欠驱动机器人手爪人主动抓取空间探索算法

Clément Rolinat, M. Grossard, Saifeddine Aloui, C. Godin
{"title":"基于变分自编码器的欠驱动机器人手爪人主动抓取空间探索算法","authors":"Clément Rolinat, M. Grossard, Saifeddine Aloui, C. Godin","doi":"10.1109/ICRA48506.2021.9561765","DOIUrl":null,"url":null,"abstract":"Grasp planning and most specifically the grasp space exploration is still an open issue in robotics. This article presents an efficient procedure for exploring the grasp space of a multifingered adaptive gripper for generating reliable grasps given a known object pose. This procedure relies on a limited dataset of manually specified expert grasps, and use a mixed analytic and data-driven approach based on the use of a grasp quality metric and variational autoencoders. The performances of this method are assessed by generating grasps in simulation for three different objects. On this grasp planning task, this method reaches a grasp success rate of 99.91% on 7000 trials.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Human Initiated Grasp Space Exploration Algorithm for an Underactuated Robot Gripper Using Variational Autoencoder\",\"authors\":\"Clément Rolinat, M. Grossard, Saifeddine Aloui, C. Godin\",\"doi\":\"10.1109/ICRA48506.2021.9561765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grasp planning and most specifically the grasp space exploration is still an open issue in robotics. This article presents an efficient procedure for exploring the grasp space of a multifingered adaptive gripper for generating reliable grasps given a known object pose. This procedure relies on a limited dataset of manually specified expert grasps, and use a mixed analytic and data-driven approach based on the use of a grasp quality metric and variational autoencoders. The performances of this method are assessed by generating grasps in simulation for three different objects. On this grasp planning task, this method reaches a grasp success rate of 99.91% on 7000 trials.\",\"PeriodicalId\":108312,\"journal\":{\"name\":\"2021 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48506.2021.9561765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9561765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在机器人技术中,抓握规划,特别是抓握空间探索仍然是一个悬而未决的问题。本文提出了一种有效的方法来探索多指自适应抓取器的抓取空间,以便在给定已知物体姿态的情况下产生可靠的抓取。该程序依赖于手动指定的专家抓取的有限数据集,并使用基于抓取质量度量和变分自动编码器的混合分析和数据驱动方法。通过对三种不同目标进行仿真,对该方法的性能进行了评价。在此抓取规划任务上,该方法经过7000次尝试,抓取成功率达到99.91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Initiated Grasp Space Exploration Algorithm for an Underactuated Robot Gripper Using Variational Autoencoder
Grasp planning and most specifically the grasp space exploration is still an open issue in robotics. This article presents an efficient procedure for exploring the grasp space of a multifingered adaptive gripper for generating reliable grasps given a known object pose. This procedure relies on a limited dataset of manually specified expert grasps, and use a mixed analytic and data-driven approach based on the use of a grasp quality metric and variational autoencoders. The performances of this method are assessed by generating grasps in simulation for three different objects. On this grasp planning task, this method reaches a grasp success rate of 99.91% on 7000 trials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信