{"title":"在两年制公立大学的入门编程课程中,使用机器学习来识别有风险的学生","authors":"C. Cooper","doi":"10.21203/rs.3.rs-1096817/v1","DOIUrl":null,"url":null,"abstract":"\n Nationally, more than one-third of students enrolling in introductory computer science programming courses (CS101) do not succeed. To improve student success rates, this research team used supervised machine learning to identify students who are “at-risk” of not succeeding in CS101 at a two-year public college. The resultant predictive model accurately identifies \\(\\approx\\)99% of “at-risk” students in an out-of-sample test data set. The programming instructor piloted the use of the model’s predictive factors as early alert triggers to intervene with individualized outreach and support across three course sections of CS101 in fall 2020. The outcome of this pilot study was a 23% increase in student success and a 7.3 percentage point decrease in the DFW rate. More importantly, this study identified academic, early alert triggers for CS101. Specifically, the first two graded programs are of paramount importance for student success in the course.","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Using Machine Learning to Identify At-risk Students in an Introductory Programming Course at a Two-year Public College\",\"authors\":\"C. Cooper\",\"doi\":\"10.21203/rs.3.rs-1096817/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Nationally, more than one-third of students enrolling in introductory computer science programming courses (CS101) do not succeed. To improve student success rates, this research team used supervised machine learning to identify students who are “at-risk” of not succeeding in CS101 at a two-year public college. The resultant predictive model accurately identifies \\\\(\\\\approx\\\\)99% of “at-risk” students in an out-of-sample test data set. The programming instructor piloted the use of the model’s predictive factors as early alert triggers to intervene with individualized outreach and support across three course sections of CS101 in fall 2020. The outcome of this pilot study was a 23% increase in student success and a 7.3 percentage point decrease in the DFW rate. More importantly, this study identified academic, early alert triggers for CS101. Specifically, the first two graded programs are of paramount importance for student success in the course.\",\"PeriodicalId\":373878,\"journal\":{\"name\":\"Adv. Artif. Intell. Mach. Learn.\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Intell. Mach. Learn.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-1096817/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-1096817/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
在全国范围内,超过三分之一的学生注册了计算机科学编程入门课程(CS101),但没有成功。为了提高学生的成功率,该研究团队使用监督机器学习来识别在两年制公立大学CS101课程中“有风险”的学生。由此产生的预测模型准确地识别出\(\approx\) 99% of “at-risk” students in an out-of-sample test data set. The programming instructor piloted the use of the model’s predictive factors as early alert triggers to intervene with individualized outreach and support across three course sections of CS101 in fall 2020. The outcome of this pilot study was a 23% increase in student success and a 7.3 percentage point decrease in the DFW rate. More importantly, this study identified academic, early alert triggers for CS101. Specifically, the first two graded programs are of paramount importance for student success in the course.
Using Machine Learning to Identify At-risk Students in an Introductory Programming Course at a Two-year Public College
Nationally, more than one-third of students enrolling in introductory computer science programming courses (CS101) do not succeed. To improve student success rates, this research team used supervised machine learning to identify students who are “at-risk” of not succeeding in CS101 at a two-year public college. The resultant predictive model accurately identifies \(\approx\)99% of “at-risk” students in an out-of-sample test data set. The programming instructor piloted the use of the model’s predictive factors as early alert triggers to intervene with individualized outreach and support across three course sections of CS101 in fall 2020. The outcome of this pilot study was a 23% increase in student success and a 7.3 percentage point decrease in the DFW rate. More importantly, this study identified academic, early alert triggers for CS101. Specifically, the first two graded programs are of paramount importance for student success in the course.