Carlos Guindel, David Martín, J. M. Armingol, C. Stiller
{"title":"训练数据对道路使用者检测的影响分析","authors":"Carlos Guindel, David Martín, J. M. Armingol, C. Stiller","doi":"10.1109/ICVES.2018.8519510","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the relevance of training data on modern object detectors used on onboard applications. Whereas modern deep learning techniques require large amounts of data, datasets with typical scenarios for autonomous vehicles are scarce and have a reduced number of samples. We conduct a comprehensive set of experiments to understand the effect of using a combination of two relatively small datasets to train an end-to-end object detector, based on the popular Faster R-CNN and enhanced with orientation estimation capabilities. We also test the adequacy of training models using partially available ground-truth labels, as a consequence of combining datasets aimed at different applications. Data augmentation is also introduced into the training pipeline. Results show a significant performance improvement in our exemplary case as a result of the higher variability of the training samples, thus opening a new way to improve the detection performance independently from the detector architecture.","PeriodicalId":203807,"journal":{"name":"2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Influence of Training Data on Road User Detection\",\"authors\":\"Carlos Guindel, David Martín, J. M. Armingol, C. Stiller\",\"doi\":\"10.1109/ICVES.2018.8519510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss the relevance of training data on modern object detectors used on onboard applications. Whereas modern deep learning techniques require large amounts of data, datasets with typical scenarios for autonomous vehicles are scarce and have a reduced number of samples. We conduct a comprehensive set of experiments to understand the effect of using a combination of two relatively small datasets to train an end-to-end object detector, based on the popular Faster R-CNN and enhanced with orientation estimation capabilities. We also test the adequacy of training models using partially available ground-truth labels, as a consequence of combining datasets aimed at different applications. Data augmentation is also introduced into the training pipeline. Results show a significant performance improvement in our exemplary case as a result of the higher variability of the training samples, thus opening a new way to improve the detection performance independently from the detector architecture.\",\"PeriodicalId\":203807,\"journal\":{\"name\":\"2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES)\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVES.2018.8519510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2018.8519510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of the Influence of Training Data on Road User Detection
In this paper, we discuss the relevance of training data on modern object detectors used on onboard applications. Whereas modern deep learning techniques require large amounts of data, datasets with typical scenarios for autonomous vehicles are scarce and have a reduced number of samples. We conduct a comprehensive set of experiments to understand the effect of using a combination of two relatively small datasets to train an end-to-end object detector, based on the popular Faster R-CNN and enhanced with orientation estimation capabilities. We also test the adequacy of training models using partially available ground-truth labels, as a consequence of combining datasets aimed at different applications. Data augmentation is also introduced into the training pipeline. Results show a significant performance improvement in our exemplary case as a result of the higher variability of the training samples, thus opening a new way to improve the detection performance independently from the detector architecture.