使用机器学习模型的儿童测量数据中的发育迟缓分类

Syahrial Syahrial, R. Ilham, Zulaika F Asikin, St. Surya Indah Nurdin
{"title":"使用机器学习模型的儿童测量数据中的发育迟缓分类","authors":"Syahrial Syahrial, R. Ilham, Zulaika F Asikin, St. Surya Indah Nurdin","doi":"10.37899/journallamultiapp.v3i2.614","DOIUrl":null,"url":null,"abstract":"The study conducted a stunting classification of measurement data for children under 5 years old. The dataset has attributes such as: gender, age, weight (BB), height (TB), weight / height (BBTB), weight / age (BBU), and height / age (TBU). The research uses the CRISP-DM methodology in processing the data. The data were tested on several classification models, namely: logistic regression (LR), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), k-nearest neighbor (KNN), classification and regression trees (CART), nave bayes (NB), support vector machine - linear kernel (SVM-Linear), support vector machine - rbf kernel (SVM-RBF), random forest classifier (RPC), adaboost (ADA), and neural network (MLPC). These models were tested on the dataset to find out the best model in accuracy. The test results show that SVM-RBF produces an accuracy of 78%. SVM-RBF has consistently been at the highest accuracy in several tests. Testing through k-fold cross validation with k=10.","PeriodicalId":272596,"journal":{"name":"Journal La Multiapp","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stunting Classification in Children's Measurement Data Using Machine Learning Models\",\"authors\":\"Syahrial Syahrial, R. Ilham, Zulaika F Asikin, St. Surya Indah Nurdin\",\"doi\":\"10.37899/journallamultiapp.v3i2.614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study conducted a stunting classification of measurement data for children under 5 years old. The dataset has attributes such as: gender, age, weight (BB), height (TB), weight / height (BBTB), weight / age (BBU), and height / age (TBU). The research uses the CRISP-DM methodology in processing the data. The data were tested on several classification models, namely: logistic regression (LR), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), k-nearest neighbor (KNN), classification and regression trees (CART), nave bayes (NB), support vector machine - linear kernel (SVM-Linear), support vector machine - rbf kernel (SVM-RBF), random forest classifier (RPC), adaboost (ADA), and neural network (MLPC). These models were tested on the dataset to find out the best model in accuracy. The test results show that SVM-RBF produces an accuracy of 78%. SVM-RBF has consistently been at the highest accuracy in several tests. Testing through k-fold cross validation with k=10.\",\"PeriodicalId\":272596,\"journal\":{\"name\":\"Journal La Multiapp\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal La Multiapp\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37899/journallamultiapp.v3i2.614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal La Multiapp","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37899/journallamultiapp.v3i2.614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究对5岁以下儿童的测量数据进行了发育迟缓分类。数据集的属性包括:性别、年龄、体重(BB)、身高(TB)、体重/身高(BBTB)、体重/年龄(BBU)和身高/年龄(TBU)。该研究使用CRISP-DM方法处理数据。采用逻辑回归(LR)、线性判别分析(LDA)、二次判别分析(QDA)、k近邻(KNN)、分类与回归树(CART)、中贝叶斯(NB)、支持向量机-线性核(SVM-Linear)、支持向量机- rbf核(SVM-RBF)、随机森林分类器(RPC)、adaboost (ADA)和神经网络(MLPC)等分类模型对数据进行检验。在数据集上对这些模型进行了测试,以找出精度最好的模型。测试结果表明,SVM-RBF的准确率为78%。SVM-RBF在几次测试中一直保持最高的准确率。通过k=10的k-fold交叉验证进行测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stunting Classification in Children's Measurement Data Using Machine Learning Models
The study conducted a stunting classification of measurement data for children under 5 years old. The dataset has attributes such as: gender, age, weight (BB), height (TB), weight / height (BBTB), weight / age (BBU), and height / age (TBU). The research uses the CRISP-DM methodology in processing the data. The data were tested on several classification models, namely: logistic regression (LR), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), k-nearest neighbor (KNN), classification and regression trees (CART), nave bayes (NB), support vector machine - linear kernel (SVM-Linear), support vector machine - rbf kernel (SVM-RBF), random forest classifier (RPC), adaboost (ADA), and neural network (MLPC). These models were tested on the dataset to find out the best model in accuracy. The test results show that SVM-RBF produces an accuracy of 78%. SVM-RBF has consistently been at the highest accuracy in several tests. Testing through k-fold cross validation with k=10.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信