在低信噪比(SNR)下使用盲源分离和连接时间分类的名字识别

Syed Suleman Abbas Zaidi, Marium Mehboob Ali, Fakhra Aftab, Yusra Shahid, M. Khurram
{"title":"在低信噪比(SNR)下使用盲源分离和连接时间分类的名字识别","authors":"Syed Suleman Abbas Zaidi, Marium Mehboob Ali, Fakhra Aftab, Yusra Shahid, M. Khurram","doi":"10.1109/C-CODE.2017.7918950","DOIUrl":null,"url":null,"abstract":"Speech recognition in a signal with low SNR is a very challenging task. When the distance between the mic and the source is large, the mic records a mixture of Speech and Noise. This paper presents a Speech recognition system which performs Blind Source Separation using Degenerate Unmixing Estimation Technique to separate speech from noise. This system uses a Deep Recurrent Neural Network based method in order to achieve robust speech recognition. An experiment comparing the efficiency of the aforementioned system with an already established Speech Recognition system is presented at the end.","PeriodicalId":344222,"journal":{"name":"2017 International Conference on Communication, Computing and Digital Systems (C-CODE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Name spotting over low signal-to-noise ratio (SNR) using Blind Source Separation and Connectionist Temporal Classification\",\"authors\":\"Syed Suleman Abbas Zaidi, Marium Mehboob Ali, Fakhra Aftab, Yusra Shahid, M. Khurram\",\"doi\":\"10.1109/C-CODE.2017.7918950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech recognition in a signal with low SNR is a very challenging task. When the distance between the mic and the source is large, the mic records a mixture of Speech and Noise. This paper presents a Speech recognition system which performs Blind Source Separation using Degenerate Unmixing Estimation Technique to separate speech from noise. This system uses a Deep Recurrent Neural Network based method in order to achieve robust speech recognition. An experiment comparing the efficiency of the aforementioned system with an already established Speech Recognition system is presented at the end.\",\"PeriodicalId\":344222,\"journal\":{\"name\":\"2017 International Conference on Communication, Computing and Digital Systems (C-CODE)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Communication, Computing and Digital Systems (C-CODE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/C-CODE.2017.7918950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Communication, Computing and Digital Systems (C-CODE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/C-CODE.2017.7918950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

低信噪比信号中的语音识别是一项非常具有挑战性的任务。当麦克风和声源之间的距离较大时,麦克风记录的是语音和噪声的混合。提出了一种利用退化解混估计技术进行盲源分离的语音识别系统。该系统采用基于深度递归神经网络的方法来实现鲁棒语音识别。最后通过实验将该系统与已有的语音识别系统的效率进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Name spotting over low signal-to-noise ratio (SNR) using Blind Source Separation and Connectionist Temporal Classification
Speech recognition in a signal with low SNR is a very challenging task. When the distance between the mic and the source is large, the mic records a mixture of Speech and Noise. This paper presents a Speech recognition system which performs Blind Source Separation using Degenerate Unmixing Estimation Technique to separate speech from noise. This system uses a Deep Recurrent Neural Network based method in order to achieve robust speech recognition. An experiment comparing the efficiency of the aforementioned system with an already established Speech Recognition system is presented at the end.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信