从有限轨迹的PLTL公式的语法引导合成

M. F. Arif, Daniel Larraz, Mitziu Echeverria, Andrew Reynolds, Omar Chowdhury, C. Tinelli
{"title":"从有限轨迹的PLTL公式的语法引导合成","authors":"M. F. Arif, Daniel Larraz, Mitziu Echeverria, Andrew Reynolds, Omar Chowdhury, C. Tinelli","doi":"10.34727/2020/isbn.978-3-85448-042-6_16","DOIUrl":null,"url":null,"abstract":"We present an efficient approach to learn past-time linear temporal logic formulas (PLTL) from a set of propositional variables and a sample of finite traces over those variables. The efficiency of our approach can be attributed to a careful encoding of the PLTL formula learning problem as a bit-vector function synthesis problem, and the use of an enhanced Syntax-Guided Synthesis (SyGuS) engine to solve the latter. We implemented our approach in a tool called Syslite and empirically evaluated its efficacy with two case studies. In these case studies, we observe that Syslite on average enjoys a speedup of 44x over current learning approaches for temporal formulas while learning the expected formulas in the vast majority of cases.","PeriodicalId":105705,"journal":{"name":"2020 Formal Methods in Computer Aided Design (FMCAD)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"SYSLITE: Syntax-Guided Synthesis of PLTL Formulas from Finite Traces\",\"authors\":\"M. F. Arif, Daniel Larraz, Mitziu Echeverria, Andrew Reynolds, Omar Chowdhury, C. Tinelli\",\"doi\":\"10.34727/2020/isbn.978-3-85448-042-6_16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an efficient approach to learn past-time linear temporal logic formulas (PLTL) from a set of propositional variables and a sample of finite traces over those variables. The efficiency of our approach can be attributed to a careful encoding of the PLTL formula learning problem as a bit-vector function synthesis problem, and the use of an enhanced Syntax-Guided Synthesis (SyGuS) engine to solve the latter. We implemented our approach in a tool called Syslite and empirically evaluated its efficacy with two case studies. In these case studies, we observe that Syslite on average enjoys a speedup of 44x over current learning approaches for temporal formulas while learning the expected formulas in the vast majority of cases.\",\"PeriodicalId\":105705,\"journal\":{\"name\":\"2020 Formal Methods in Computer Aided Design (FMCAD)\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Formal Methods in Computer Aided Design (FMCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Formal Methods in Computer Aided Design (FMCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们提出了一种从一组命题变量和这些变量上的有限轨迹样本中学习过去时间线性时间逻辑公式(PLTL)的有效方法。我们的方法的效率可归因于将PLTL公式学习问题仔细编码为位向量函数合成问题,并使用增强的语法引导合成(SyGuS)引擎来解决后者。我们在一个名为Syslite的工具中实现了我们的方法,并通过两个案例研究对其有效性进行了实证评估。在这些案例研究中,我们观察到Syslite在绝大多数情况下学习预期公式时,平均比当前的时间公式学习方法加速44倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SYSLITE: Syntax-Guided Synthesis of PLTL Formulas from Finite Traces
We present an efficient approach to learn past-time linear temporal logic formulas (PLTL) from a set of propositional variables and a sample of finite traces over those variables. The efficiency of our approach can be attributed to a careful encoding of the PLTL formula learning problem as a bit-vector function synthesis problem, and the use of an enhanced Syntax-Guided Synthesis (SyGuS) engine to solve the latter. We implemented our approach in a tool called Syslite and empirically evaluated its efficacy with two case studies. In these case studies, we observe that Syslite on average enjoys a speedup of 44x over current learning approaches for temporal formulas while learning the expected formulas in the vast majority of cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信